Skip to main content

Advertisement

Log in

Simulation-based Study of Super-Nernstian pH Sensor Based on Doping-less Tunnel-field Effect Transistor

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, we have simulated doping less tunneling field-effect transistor (DL-TFET) based pH sensor which can detect the pH variation in an aqueous (electrolyte) medium. The source-sided underlapped technique is employed to achieve better sensitivity. The simulated results were extracted with the help of the software package TCAD-Silvaco. In this work, we have compared the pH sensing capabilities of both conventionally doped TFET (C-TFET) and DL-TFET having the same configuration. Result suggests that the sensitivity of DL-TFET is equal to that of C-TFET. Since DL-TFET already exhibits superiority over C-TFET in terms of better immunity against random doping fluctuations (RDF), low fabrication cost and complexity, it can be used as a better alternative to C-TFET based ISFETs. Furthermore, in this work, we have discussed and demonstrated how the performance and sensitivity of the DL-TFET device can be further increased by the use of low energy band materials like germanium in the source region and high K dielectric materials like Al2O3 as a sensitive oxide layer underneath the underlapped region. The voltage sensitivity achieved by DL-TFET in this work is 312 mV/pH which surpasses the Nernst limits by more than 5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17(1):70–71. https://doi.org/10.1109/DRC.2012.6256950

    Article  CAS  PubMed  Google Scholar 

  2. Bergveld P (1986) The development and application of FET-based biosensors. Biosensors 2(1):15–33. https://doi.org/10.1016/0265-928x(86)85010-6

    Article  CAS  PubMed  Google Scholar 

  3. Kim C-H, Jung C, Lee K-B, Park HG, Choi Y-K (2011) Label-free DNA detection with a nanogap embedded complementary metal oxide semiconductor. Nanotechnology 22(13):135502. https://doi.org/10.1088/0957-4484/22/13/135502

    Article  CAS  PubMed  Google Scholar 

  4. Chen X et al (2010) () Electrical nanogap devices for biosensing. Mater Today (Kidlington) 13(11):28–41. https://doi.org/10.1016/S1369-7021(10)70201-7

    Article  CAS  Google Scholar 

  5. van Hal REG, Eijkel JCT, Bergveld P (1995) A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens Actuators B Chem 24(1–3):201–205. https://doi.org/10.1016/0925-4005(95)85043-0

    Article  Google Scholar 

  6. Reddy B Jr et al (2011) High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing. Biomed Microdevices 13(2):335–344. https://doi.org/10.1007/s10544-010-9497-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu N, Hui Liu Y, Feng P, Qiang Zhu L, Shi Y, Wan Q (2015) Enhancing the pH sensitivity by laterally synergic modulation in dual-gate electric-double-layer transistors. Appl Phys Lett 106(7):073507. https://doi.org/10.1063/1.4913445

    Article  CAS  Google Scholar 

  8. Ahn J-H et al (2013) A pH sensor with a double-gate silicon nanowire field-effect transistor. Appl Phys Lett 102(8):083701. https://doi.org/10.1063/1.4793655

    Article  CAS  Google Scholar 

  9. Baek DJ, Duarte JP, Moon D-I, Kim C-H, Ahn J-H, Choi Y-K (2012) Accumulation mode field-effect transistors for improved sensitivity in nanowire-based biosensors. Appl Phys Lett 100(21):213703. https://doi.org/10.1063/1.4723843

    Article  CAS  Google Scholar 

  10. Spijkman M, Smits ECP, Cillessen JFM, Biscarini F, Blom PWM, de Leeuw DM (2011) Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Appl Phys Lett 98(4):043502. https://doi.org/10.1063/1.3546169

    Article  CAS  Google Scholar 

  11. Jang H-J, Cho W-J (2012) Fabrication of high-performance fully depleted silicon-on-insulator based dual-gate ion-sensitive field-effect transistor beyond the Nernstian limit. Appl Phys Lett 100(7):073701. https://doi.org/10.1063/1.3685497

    Article  CAS  Google Scholar 

  12. Sarkar D, Banerjee K (2012) Fundamental limitations of conventional-FET biosensors: Quantum-mechanical-tunneling to the rescue. In: 70th Device Research Conference. University Park, PA, pp 83–84. https://doi.org/10.1109/DRC.2012.6256950

  13. Go J, Nair PR, Reddy B Jr, Dorvel B, Bashir R, Alam MA (2012) Coupled heterogeneous nanowire-nanoplate planar transistor sensors for giant (>10 V/pH) Nernst response. ACS Nano 6(7):5972–5979. https://doi.org/10.1021/nn300874w

    Article  CAS  PubMed  Google Scholar 

  14. Knopfmacher O et al (2010) Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett 10(6):2268–2274. https://doi.org/10.1021/n1100892y

    Article  CAS  PubMed  Google Scholar 

  15. Kumar N, Kumar J, Panda S (2016) Enhanced pH sensitivity over the Nernst limit of electrolyte gated a-IGZO thin film transistor using branched polyethylenimine. RSC Adv 6(13):10810–10815. https://doi.org/10.1039/c5ra26409j

    Article  CAS  Google Scholar 

  16. Go J, Nair PR, Reddy B, Dorvel B, Bashir R, Alam MA (2010) Beating the Nernst limit of 59mV/pH with double-gated nano-scale field-effect transistors and its applications to ultra-sensitive DNA biosensors. In: 2010 International Electron Devices Meeting. San Francisco, CA, pp 8.7.1–8.7.4. https://doi.org/10.1109/IEDM.2010.5703325

  17. Cao W, Sarkar D, Khatami Y, Kang J, Banerjee K (2014) Subthreshold-swing physics of tunnel field-effect transistors. AIP Adv 4(6):067141

    Article  Google Scholar 

  18. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373):329–337. https://doi.org/10.1038/nature10679

    Article  CAS  PubMed  Google Scholar 

  19. Sarkar D, Banerjee K (2012) Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors. Appl Phys Lett 100(14):143108. https://doi.org/10.1063/1.3698093

    Article  CAS  Google Scholar 

  20. Bal P, Akram MW, Mondal P, Ghosh B (2013) Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J Comput Electron 12(4):782–789. https://doi.org/10.1007/s10825-013-0483-6

    Article  Google Scholar 

  21. Leung G, Chui CO (2012) Variability Impact of Random Dopant Fluctuation on Nanoscale Junctionless FinFETs. IEEE Electron Device Lett 33(6):767–769. https://doi.org/10.1109/LED.2012.2191931

    Article  Google Scholar 

  22. Kumar MJ, Janardhanan S (2013) Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans Electron Devices 60(10):3285–3290. https://doi.org/10.1109/TED.2013.2276888

    Article  CAS  Google Scholar 

  23. Anand S, Amin SI, Sarin RK (2016) Performance analysis of charge plasma based dual electrode tunnel FET. J Semicond 37(5):054003. https://doi.org/10.1088/1674-4926/37/5/054003

  24. Anand S, Singh A, Amin SI, Thool AS (2019) Design and performance analysis of dielectrically modulated doping-less tunnel FET-based label free biosensor. IEEE Sens J 19(12):4369–4374

    Article  CAS  Google Scholar 

  25. Wadhwa G, Raj B (2018) Label free detection of biomolecules using charge-plasma-based gate underlap dielectric modulated junctionless TFET. J Electron Mater 47(8):4683–4693

    Article  CAS  Google Scholar 

  26. Dwivedi P, Singh R, Chauhan YS (2021) Crossing the Nernst limit (59 mV/pH) of sensitivity through tunneling transistor-based biosensor. IEEE Sens J 21(3):3233–3240. https://doi.org/10.1109/JSEN.2020.3025975

    Article  CAS  Google Scholar 

  27. Silvaco International (2021) Atlas user’s manual: device simulation software, Version 5.2.14.R. Silvaco Int. Inc., Santa Clara, CA

  28. Lee B-S et al (2021) Doping-less tunnel field-effect transistors by compact Si drain frame/Si0.6Ge0.4-channel/Ge source. AIP Adv. 11(4):045007

    Article  CAS  Google Scholar 

  29. Bandiziol A, Palestri P, Pittino F, Esseni D, Selmi L (2015) A TCAD-Based Methodology to Model the Site-Binding Charge at ISFET/Electrolyte Interfaces. IEEE Trans Electron Devices 62(10):3379–3386. https://doi.org/10.1109/TED.2015.2464251

    Article  CAS  Google Scholar 

  30. Choi B et al (2015) TCAD-Based Simulation Method for the Electrolyte–Insulator–Semiconductor Field-Effect Transistor. IEEE Trans Electron Devices 62(3):1072–1075. https://doi.org/10.1109/TED.2015.2395875

    Article  Google Scholar 

  31. Pittino F, Palestri P, Scarbolo P, Esseni D, Selmi L (2014) Models for the use of commercial TCAD in the analysis of silicon-based integrated biosensors. Solid State Electron 98:63–69. https://doi.org/10.1016/j.sse.2014.04.011

    Article  CAS  Google Scholar 

  32. Kannan N, Kumar MJ (2015) Charge-modulated underlap I-MOS transistor as a label-free biosensor: A simulation study. IEEE Trans Electron Devices 62(8):2645–2651. https://doi.org/10.1109/TED.2015.2446612

    Article  CAS  Google Scholar 

  33. Koneshan S, Rasaiah JC, Lynden-Bell RM, Lee SH, Lynden-Bell RM, Lee SH (1998) Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 °C. J Phys Chem B 102(98):4193–4204. https://doi.org/10.1021/jp980642x

    Article  CAS  Google Scholar 

  34. Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc 70:1807

    CAS  Google Scholar 

  35. Bousse L, De Rooij NF, Bergveld P (1983) Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Trans Electron Devices 30(10):1263–1270. https://doi.org/10.1109/t-ed.1983.21284

    Article  Google Scholar 

  36. Lee J, Hwang S, Choi B, Lee JH, Moon DI, Seol ML, Kim CH, Chung IY, Park BG, Choi YK, Kim DM, Kim DH, Choi SJ (2013) A novel SiNW/CMOS hybrid biosensor for high sensitivity/low noise. In: 2013 IEEE International Electron Devices Meeting. IEEE, Washington, DC, pp 14.5.1–14.5.4. https://doi.org/10.1109/IEDM.2013.6724631

  37. Bedner K et al (2010) pH response of silicon nanowire sensors: Impact of nanowire width and gate oxide. Sensors Mater 25(8):567–576

    Google Scholar 

  38. Narang R, Saxena M, Gupta M (2017) Analytical model of pH sensing characteristics of junctionless silicon on insulator ISFET. IEEE Trans Electron Devices 64(4):1742–1750. https://doi.org/10.1109/TED.2017.2668520

    Article  Google Scholar 

  39. Nakazawa H, Otake R, Futagawa M, Dasai F, Ishida M, Sawada K (2014) High-sensitivity charge-transfer-type pH sensor with quasi-signal removal structure. IEEE Trans Electron Devices 61(1):136–140. https://doi.org/10.1109/TED.2013.2292563

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Zuber Rasool: Simulation, Computation, TCAD software and Writing – Original draft preparation.

S. Intekhab Amin: Conceptualization, Computation, TCAD software, Revision, Supervision, and Validation.

Lubna Majeed: Computation, TCAD software Simulation and Writing.

Ishrat Bashir: Simulation and Writing.

Anjar Seraj: Computation and simulation.

Sunny Anand: revision, Supervision, and Validation.

Corresponding author

Correspondence to S. Intekhab Amin.

Ethics declarations

Ethics Approval and Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Informed Consent

Not Applicable.

Research Involving Human Participants and/or Animals

Not Applicable.

Disclosure of Potential Conflicts of Interest

No conflicts of interest to report.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, Z., Amin, S.I., Majeed, L. et al. Simulation-based Study of Super-Nernstian pH Sensor Based on Doping-less Tunnel-field Effect Transistor. Silicon 15, 4285–4296 (2023). https://doi.org/10.1007/s12633-023-02329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02329-2

Keywords

Navigation