Skip to main content

Advertisement

Log in

Design Simulation and Parametric Investigation of a Metamaterial Light Absorber with Tungsten Resonator for Solar Cell Applications Using Silicon as Dielectric Layer

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The unit cell structure design and mathematical simulation models of a wideband Metamaterial Light Absorber (MLA) operating in visible range (450 – 750 THz) based on a tungsten metal, based on a Stepped Impedance Resonator (SIR) model is presented. The MLA is being analyzed for electron mobility to achieve significant light photon conversion to use this technology in solar cells for energy harvesting applications. A Metamaterial Light Absorber based on a three-layered metallic semiconductor optical thin film structure is proposed. The top metallic layer is made by Tungsten. Semiconductor layer is developed by silicon and the whole structure is developed over a glass substrate and the same procedure is validated using the Finite Element Method (FEM).The design was subjected to a number of parametric analysis in order to obtain the optimal physical dimension. The various analysis has also much elucidated the process of absorption. Based on the simulation model, the proposed MLA has two peak absorptions of 100 and 99% at 567 THz and 645 THz respectively. The positive light absorption is more than 75% from the frequency range of 545 to 680 THz and produced positive absorption over the whole visible spectrum (450 – 750 THz).The predicted electric field distributions indicate an increased wideband absorption is induced by the stimulation of local and propagating surface electrons and guiding mode resonances. The proposed MLA based on tungsten SIR has the potential to be used in solar cells, solar energy harvesters, solar thermo-PVs, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data samples have been taken using Ansys HFSS.

References

  1. Maier T, Brückl H (2009) Wavelength-tunable microbolometers with metamaterial absorbers. Opt Lett 34:3012–3014

    Article  PubMed  Google Scholar 

  2. Niesler FB, Gansel JK, Fischbach S, Wegener M (2012) Metamaterial metal-based bolometers. Applied Physics Letters 100(20):203508

  3. Landy NI, Bingham CM, Tyler T, Jokerst N, Smith DR, Padilla WJ (2009) Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys Rev B 79(12)

  4. Rufangura P, Sabah C (2017) Graphene-based wideband metamaterial absorber for solar cells application. J Nanophotonics 11(3):036008

  5. Du John HV, Jose T, Jone AAA, Sagayam KM, Pandey BK, Pandey D (2022) Polarization insensitive circular ring resonator basedperfect metamaterial absorber design and simulation on a silicon substrate. Silicon 14(14):9009–9020

    Article  Google Scholar 

  6. Veselago VG (1968) The Electrodynamics of Substances with Simultaneously Negative Values of ɛ and μ. Soviet Physics Uspekhi 10:509

    Article  Google Scholar 

  7. Ozer Z, Mamedov AM, Ozbay E (2017) Metamaterial Absorber Based Multifunctional Sensor Application. IOP Conference Series: Materials Science and Engineering 175:012059

    Article  Google Scholar 

  8. Cao C, Cheng Y (2019) A broadband plasmonic light absorber based on a tungsten meander-ring-resonator in visible region. Appl Phys A 125(1):15

    Article  Google Scholar 

  9. Wang T, Zhang Y, Zhang H, Cao M (2020) Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial. Opt Mater Express 10:369–386

    Article  CAS  Google Scholar 

  10. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

  11. Bhattacharyya S, Ghosh S, Chaurasiya D, Srivastava KV (2015) Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl Phys A 118(1):207–215

    Article  CAS  Google Scholar 

  12. Gao R, Xu Z, Ding C, Wu L, Yao J (2015) Graphene metamaterial for multiband and broadband terahertz absorber. Optics Communications 356:400–404

    Article  CAS  Google Scholar 

  13. Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L (2014) Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure. Appl Phys Lett 105(18):181102

    Article  Google Scholar 

  14. Wu J, Zhou C, Yu J, Cao H, Li S, Jia W (2014) Polarization-Independent absorber based on a cascaded metal–dielectric grating structure. IEEE Photonics Technol Lett 26(9):949–952

    Article  CAS  Google Scholar 

  15. Shen Y, Pei Z, Pang Y, Wang J, Zhang A, Qu S (2015) An extremely wideband and lightweight metamaterial absorber. J Appl Phys 117(22):224503

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhi Cheng Y, Wang Y, Nie Y, Zhou Gong R, Xiong X, Wang X (2012) Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. J Appl Phys 111(4):044902

    Article  Google Scholar 

  17. Han NR, Chen ZC, Lim CS, Ng B, Hong MH (2011) Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt Express 19(8):6990–6998

    Article  CAS  PubMed  Google Scholar 

  18. Bai Y, Zhao L, Ju D, Jiang Y, Liu L (2015) Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Opt Express 23(7):8670–8680

    Article  CAS  PubMed  Google Scholar 

  19. Wen QY, Zhang HW, Yang QH, Chen Z, Long Y, Jing YL, Lin Y, Zhang PX (2012) A tunable hybrid metamaterial absorber basedon vanadium oxide lms. J Phys D Appl Phys 45(23):235106

    Article  Google Scholar 

  20. Shrekenhamer D, Chen W-C, Padilla WJ (2013) Liquid crystal tunablemetamaterial absorber. Phys Rev Lett 110:177403

    Article  PubMed  Google Scholar 

  21. Zhao J, Cheng Q, Chen J, Qi MQ, Jiang WX, Cui TJ (2013) A tunablemetamaterial absorber using varactor diodes. New J Phys 15:043049

    Article  CAS  Google Scholar 

  22. Amer AAG, Sapuan SZ, Nasimuddin N, Alphones A, Zinal NB (2020) A comprehensive review of metasurface st ructures suitable for RF energy harvesting. IEEE Access 8:76433–76452

    Article  Google Scholar 

  23. Wang W, Xu C, Yan M, Wang A, Wang J, Feng M, Qu S (2019) Broadband tunable metamaterial absorber based on U-shaped ferrite structure. IEEE Access 7:150969–150975

    Article  Google Scholar 

  24. Xiong H, Wu YB, Dong J, Tang MC, Jiang YN, Zeng XP (2018) Ultra-thin andbroadband tunable metamaterial graphene absorber. Opt Exp 26(2):1681–1688

    Article  CAS  Google Scholar 

  25. Zhao YT, Wu B, Huang BJ, Cheng Q (2017) Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Opt Exp 25(7):7161–7169

    Article  CAS  Google Scholar 

  26. Wang YQ, Song MW, Pu MB et al (2016) Staked Graphene for Tunable TerahertzAbsorber with Customized Bandwidth. Plasmonics 11:1201–1206

    Article  CAS  Google Scholar 

  27. Du, X, Yan, F, Wang, W, Tan, S, Zhang, L, Bai, Z, ... Hou, Y (2020) A polarization-and angle-insensitive broadband tunable metamaterial absorber using patterned graphene resonators in the terahertz band. Opt Laser Technol, 132, 106513

  28. David S, Wen CC, Willie JP (2013) Liquid Crystal Tunable Metamaterial Absorber. Phys Rev Lett 110(17):177403

    Article  Google Scholar 

  29. Pang Y et al (2017) Thermally tunable water-substrate broadband metamaterial absorbers. Appl Phys Lett 110(10):104103

    Article  Google Scholar 

  30. Wu J (2016) Broadband light absorption by tapered metal-dielectricmultilayered grating structures. Opt Commun 365:93–98

    Article  CAS  Google Scholar 

  31. Hu S, Yang H, Huang X, Liu D (2014) Metamaterial-based frustumof cones array nanostructure for efficient absorber in the solar spectral band. ApplPhys A Mater Sci Process 117(3):1375–1380

    Article  CAS  Google Scholar 

  32. Liang Q, Wang T, Lu Z, Sun Q, Fu Y, Yu W (2013) Metamaterial based two dimensional PlasmonicSubwavelength structures offerthe broadest waveband light harvesting. Advanced Optical Mater 1(1):43–49

    Article  Google Scholar 

  33. Lobet M, Lard M, Sarrazin M, Deparis O, Henrard L (2014) Plasmon hybridization in pyramidal metamaterials: a route towardsultra-broadband absorption. Opt Express 22(10):12678–12690

    Article  CAS  PubMed  Google Scholar 

  34. Li W, Cheng Y (2020) Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt Commun 462:125265

  35. Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Wang X (2020) A tunable terahertz metamaterial absorber composed of elliptical ring graphene arrays with refractive index sensing application. Results in Physics 16:103012

  36. Wang B-X, He Y, Xu N, Wang X, Wang Y, Cao J (2020) Design ofdual-band polarization controllable metamaterial absorber atterahertz frequency. Results Phys 17:103077

    Article  Google Scholar 

  37. Wang Y, Chen Z, Xu D, Yi Z, Chen X, Chen J, Yi Y (2020) Triple and perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys 16:102951

    Article  Google Scholar 

  38. Yu P, Yang H, Chen X, Yi Z, Yao W, Chen J, ...& Wu, P. (2020) Ultra-wideband solar absorber based on refractory titanium metal. Renew Energy 158:227–235

    Article  CAS  Google Scholar 

  39. Cao C, Cheng Y (2019) A broadband plasmonic light absorber based on a tungsten meander-ring-resonator in visible region. Appl Phys A 125:1–8

    Article  Google Scholar 

  40. He S, Chen T (Nov.2013) Broadband THz absorbers with graphene-based anisotropic metamaterial films. IEEE Trans THz Sci Technol 3(6):757–763

    Article  CAS  Google Scholar 

  41. Amin M, Farhat M, Bagci H (2013) An ultra-broadband multilayered graphene absorber. Opt Express 21:29938–29948

    Article  PubMed  Google Scholar 

  42. Fu P, Liu F, Ren GJ, Su F, Li D, Yao JQ (2018) A broadband metamaterial absorber based on multi-layer graphene in the terahertz region. Opt Commun 417:62–66

    Article  CAS  Google Scholar 

  43. Ghosh SK, Yadav VS, Das S, Bhattacharyya S (2019) Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range. IEEE Trans Electromagn Compat 62(2):346–354

    Article  Google Scholar 

  44. Elfergani I, SadiqHussaini A, Rodriguez J, Abd-Alhameed R (2018) Antenna Fundamentals for Legacy Mobile Applications and Beyond. Springer Int Publishing AG, Bolingbrook IL, USA

  45. Lobet M, Lard M, Sarrazin M, Deparis O, Henrard L (2014) Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption. Opt Express 22(10):12678–12690

    Article  CAS  PubMed  Google Scholar 

  46. Qin F, Chen Z, Chen X, Yi Z, Yao W, Duan T, Yi Y (2020) A tunable triple-band near-infrared metamaterial absorber based on au nano-cuboids array. Nanomaterials 10(2):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Chen Y, Hao J, Yan M, Qiu M (2011) Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared 109(7):74510

  48. Huang HL, Xia H, Guo ZB, Xie D, Li HJ (2017). Design of broadband metamaterial absorbers for permittivity sensitivity and solar cell application. Chin Phys Lett 34(11)

  49. Numan AB, Sharawi MS (2013) Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antennas Propag Mag 55(5):202–211

    Article  Google Scholar 

  50. Dincer F, Karaaslan M, Unal E, Delihacioglu K, Sabah C (2014) Design of polarization and incident angle insensitive dual -band metamaterial absorber based on isotropic resonators. Prog Electromagn Res 144:123–132

    Article  Google Scholar 

  51. Hoque A, Islam MT (2020) Numerical analysis of single negative broadband metamaterial absorber based on tri thin layer material in visible spectrum for solar cell energy harvesting. Plasmonics 15(4):1061–1069

    Article  CAS  Google Scholar 

  52. Mahmud S, Islam SS, Mat K, Chowdhury ME, Rmili H, Islam MT (2020) Design and parametric analysis of a wide-angle polarizationinsensitive metamaterial absorber with a star shape resonator for optical wavelength applications. Results in Physics 18

  53. Cao C, Cheng Y (2018) A broadband plasmonic light absorber based on a tungsten meander-ring-resonator in visible region. Applied Physics A 125(1)

  54. Du John HV, Moni DJ, Ponraj DN, Sagayam KM, Pandey D, Pandey BK (2021) Design of Si based nano strip resonator with polarization-insensitive metamaterial (MTM) absorber on a glass substrate. Silicon 1–10.

  55. Dincer F, Karaaslan M, Unal E, Delihacioglu K, Sabah C (2014) Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators. Prog Electromagn Res 144:123–132

  56. Yusoff YBM (2022) Copper indium gallium selenide solar cells. In Comprehensive Guide on Organic and Inorganic Solar Cells (pp. 85–113). Academic Press

  57. Suzuki T, Asada H (2020) Reflectionless zero refractive index metasurface in the terahertz waveband. Optics Express 28(15):21509–21521

  58. Wang B-X (2022) Realization of broadband terahertz metamaterial absorber using an antisymmetric resonator consisting of two mutually perpendicular metallic strips. APL Materials 10:050701

  59. Wang BX, Xu C, Duan G et al (2022) Miniaturized and actively tunable triple-band terahertz metamaterial absorber using an analogy I-typed resonator. Nanoscale Res Lett 17:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang BX, Xu W, Wu Y, Yang Z, Lai S, Lu L (2022) Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch. Nanoscale Advances 4(5):1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang BX, He Y, Lou P, Zhu H (2021) Multi-band terahertz superabsorbers based on perforated square-patch metamaterials. Nanoscale Advances 3(2):455–462

    Article  CAS  PubMed  Google Scholar 

  62. Wang BX, Xu C, Duan G, Jiang J, Xu W, Yang Z, Wu Y (2022) Miniaturized and actively tunable triple-band terahertz metamaterial absorber using an analogy I-typed resonator. Nanoscale Res Lett 17(1):1–12

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to Department of Technical Education and RF Laboratory, Department of Electronics and communication Engineering, Karunya institute of Technology an Sciences, Coimbatore, India. The authors would also like to thank to Vice Chancellor, Dr. A.P.J. Abdul Kalam Technical University, and Uttar Pradesh, India Code Availability The relevant code with the manuscript is also available and would be available, if will be asked to do so later.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

HVDJ, KMS, TJ, DP, BKP, PK, and JK contributed in writing manuscript, simulation, validation, literature review. DP and BKP also contributed in final checking of manuscript. All authors finally approved the final manuscript.

Corresponding author

Correspondence to Digvijay Pandey.

Ethics declarations

Ethics Approval

Not Applicable (as the results of studies does not involve any human or animal).

Consent to Participate

Not Applicable (as the results of studies does not involve any human or animal).

Consent for Publication

Not Applicable (as the results of studies does not involve any human or animal).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du John, H.V., Sagayam, K.M., Jose, T. et al. Design Simulation and Parametric Investigation of a Metamaterial Light Absorber with Tungsten Resonator for Solar Cell Applications Using Silicon as Dielectric Layer. Silicon 15, 4065–4079 (2023). https://doi.org/10.1007/s12633-023-02321-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02321-w

Keywords

Navigation