Skip to main content
Log in

A Critical Review on Reliability and Short Circuit Robustness of Silicon Carbide Power MOSFETs

  • Review Article
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Superior electrical and physical properties of SiC (Silicon Carbide) make them ideal for various high voltage, high frequency and high power electronic applications. When compared to GaAs and GaN, the advantage of SiC is that its natural oxide is SiO2 and is used as the gate-dielectric in SiC MOSFETs. Better performance of SiC Power MOSFETs has made it as an ideal substitute to its Si counterpart. Even though the performance of SiC Power MOSFETs has improved significantly over recent years (breakdown voltage over 3300 V [144], field effect channel mobility over 160 cm2/Vs (Cabello et al. in Appl Phys Lett 111, 2017), specific on state resistance as low as 1.63 mΩ.cm2 (Fu et al. in Microelectron Reliab 123, 2021) and short circuit withstand time over 80 µS (Wang et al. in IEEE Trans Power Electron 31:1555–1566, 2016)), reliability issues due to the presence of near interface oxide defects and degradation due to poor quality of interface and gate dielectric is its major drawback. In this article we have extensively studied various reliability and stability issues that affect the performance of Silicon Carbide Power MOSFETs. The short-circuit behaviour and robustness of various SiC Power MOSFETs were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

NOT APPLICABLE.

References

  1. Chen X, Chen W, Yang X, Ren Y, Qiao L (2021) Common Mode EMI Mathematical Modeling Based on Inductive Coupling Theory in a Power Module With Parallel-Connected SiC MOSFETs. IEEE Trans Power Electron 36:6644–6661

    Article  Google Scholar 

  2. Dimitrijev S (2006) Silicon carbide as a material for mainstream electronics. Microelectron Eng 83:123–125

    Article  CAS  Google Scholar 

  3. Kwon I (2018) Hyuck-In Kwon. Il Hwan Cho, Development of high temperature operation silicon based MOSFET for harsh environment application, Results in Physics 11:475–481

    Google Scholar 

  4. Pushpakaran BN, Subburaj AS, Bayne SB, Mookken J (2016) Impact of silicon carbide semiconductor technology in Photovoltaic Energy System. Renew Sustain Energy Rev 55:971–989

    Article  CAS  Google Scholar 

  5. Palmour JW, Edmond JA, Kong HS, Carter CH (1993) 6H-Silicon Carbide power devices for aerospace applications. Proceedings Intersoc. Energy Conversion Eng. Conf. 1:249–254

    Google Scholar 

  6. Shenoy JN, Cooper JA, Melloch MR (1997) High-voltage double-implanted power MOSFET’s in 6H-SiC. IEEE Electron Device Lett 18:93–95

    Article  CAS  Google Scholar 

  7. Ryu, SH, Krishnaswami, S, Hull, B, Richmond, J, Agarwal, A, Hefner, A (2006) 10 kV, 5A 4H-SiC power DMOSFET, Proceedings of the 18th International Symposium on Power Semiconductor Devices & IC’s, pp. 1–4

  8. Mehrad M (2021) Inserting Different Charge Regions in Power MOSFET for Achieving High Performance of the Electrical Parameters. SILICON 13:1107–1111

    Article  CAS  Google Scholar 

  9. Liu J, Ohsato H, Wang X, Liao M, Koide Y (2016) Design and fabrication of high performance diamond triple-gate field-effect transistors. Sci Rep 6:34757

    Article  CAS  Google Scholar 

  10. Arribas AP, Shang F, Krishnamurthy M, Shenai K (2015) Simple and Accurate Circuit Simulation Model for SiC Power MOSFETs. IEEE Trans Electron Devices 62:449–457

    Article  CAS  Google Scholar 

  11. Fabre J, Ladoux P (2016) Parallel Connection of 1200-V/100-A SiC-MOSFET Half-Bridge Modules. IEEE Trans Ind Appl 52:1669–1676

    CAS  Google Scholar 

  12. Kraus R, Castellazzi A (2016) A Physics-Based Compact Model of SiC Power MOSFETs. IEEE Trans Power Electron 31:5863–5870

    Article  Google Scholar 

  13. Zeng Z, Li X (2018) Comparative Study on Multiple Degrees of Freedom of Gate Drivers for Transient Behavior Regulation of SiC MOSFET. IEEE Trans Power Electron 33:8754–8763

    Article  Google Scholar 

  14. Matocha K (2008) Challenges in SiC power MOSFET design. Solid-State Electron 52:1631–1635

    Article  CAS  Google Scholar 

  15. Ngwashi DK, Phung LV (2021) Recent review on failures in silicon carbide power MOSFETs. Microelectron Reliab 123:114169

    Article  CAS  Google Scholar 

  16. Mounika B, Ajayan J, Bhattacharya S, Nirmal D (2022) Recent developments in materials, architectures and processing of AlGaN/GaN HEMTs for future RF and power electronic applications: A critical review. Micro and Nanostructures 168:207317

    Article  CAS  Google Scholar 

  17. Shenoy PM, Baliga BJ (1997) The Planar 6H-SiC ACCUFET: A New High-Voltage Power MOSFET Structure. IEEE Electron Device Lett 18:589–591

    Article  CAS  Google Scholar 

  18. Planson D, Locatelli ML, Lanois F, Chante JP (1999) Design of a 600 V silicon carbide vertical power MOSFET. Mater Sci Eng, B 61–62:497–501

    Article  Google Scholar 

  19. Raynaud C (2001) Silica Films on Silicon Carbide: A Review of Electrical Properties and Device Applications. J Non-Cryst Solids 280:1–31

    Article  CAS  Google Scholar 

  20. Shams SF, Sundaram KB, Chow LC (1999) Simulation of silicon carbide power MOSFETs at high temperature. Solid-State Electron 43:367–374

    Article  CAS  Google Scholar 

  21. Harada S, Suzuki S, Senzaki J, Kosugi R, Adachi K, Fukuda K, Arai K (2001) High Channel Mobility in Normally-Off 4H-SiC Buried Channel MOSFETs. IEEE Electron Device Lett 22:272–274

    Article  CAS  Google Scholar 

  22. Senzaki J, Kojima K, Harada S, Kosugi R, Suzuki S, Suzuki T, Fukuda K (2002) Excellent Effects of Hydrogen Postoxidation Annealing on Inversion Channel Mobility of 4H-SiC MOSFET Fabricated on (11 2 0) Face. IEEE Electron Device Lett 23:13–15

    Article  CAS  Google Scholar 

  23. Hasanuzzaman Md, Islam SK, Tolbert LM, Alam MT (2004) Temperature dependency of MOSFET device characteristics in 4H- and 6H-silicon carbide (SiC). Solid-State Electron 48:1877–1881

    Article  CAS  Google Scholar 

  24. Hasanuzzaman Md, Islam SK, Tolbert LM (2004) Effects of temperature variation (300–600 K) in MOSFET modeling in 6H–silicon carbide. Solid-State Electron 48:125–132

    Article  CAS  Google Scholar 

  25. Sei-Hyung Ryu S, Krishnaswami M, O’Loughlin J, Richmond A, Agarwal J, Palmour A.R. Hefner (2004) 10-kV, 123-mΩ cm2 4H-SiC Power DMOSFETs. IEEE Electron. Device Lett. 25:556–558

    Article  Google Scholar 

  26. Kimoto T, Kawano H, Suda J (2005) 1330 V, 67 mΩ.cm2 4H-SiC(0001), RESURF MOSFET. IEEE Electron. Device Lett. 26:649–651

    Article  CAS  Google Scholar 

  27. Deng X, Guo Y, Dai T, Li C, Chen X, Chen W, Zhang Y, Zhang B (2017) A robust and area-efficient guard ring edge termination technique for 4H-SiC power MOSFETs. Mater Sci Semicond Process 68:108–113

    Article  CAS  Google Scholar 

  28. Soler V, Cabello M, Berthou M, Montserrat J, Rebollo J, Godignon P, Mihaila A, Rogina MR, Rodríguez A, Sebastián J (2017) High Voltage 4H-SiC Power MOSFETs with Boron doped gate oxide. IEEE Trans Industr Electron 64:8962–8970

    Article  Google Scholar 

  29. Reddy VPK, Kotamraju S (2018) Improved device characteristics obtained in 4H-SiC MOSFET using high-k dielectric stack with ultrathin SiO2-AlN as interfacial layers. Mater Sci Semicond Process 80:24–30

    Article  Google Scholar 

  30. Yang T, Bai S, Huang R (2018) 4H-SiC trench MOSFET with splitting double-stacked shielded region. Superlattices Microstruct 122:419–425

    Article  CAS  Google Scholar 

  31. Kim T, Funaki T (2016) Thermal measurement and analysis of packaged SiC MOSFETs. Thermochim Acta 633:31–36

    Article  CAS  Google Scholar 

  32. Marzoughi A, Wang J, Burgos R, Boroyevich D (2017) Characterization and Evaluation of the State-of-the-Art 3.3-kV 400-A SiC MOSFETs. IEEE Trans. Industrial Electron 64:8247–8257

    Article  Google Scholar 

  33. Dbeiss M, Avenas Y, Zara H (2017) Comparison of the electro-thermal constraints on SiC MOSFET and Si IGBT power modules in photovoltaic DC/AC inverters. Microelectron Reliab 78:65–71

    Article  CAS  Google Scholar 

  34. Rothmund D, Bortis D, Kolar JW (2018) Highly Compact Isolated Gate Driver With Ultrafast Overcurrent Protection for 10 kV SiC MOSFETs. CPSS Transactions on Power Electronics and Applications 3:278–291

    Article  Google Scholar 

  35. Marzoughi A, Burgos R, Boroyevich D (2019) Investigating Impact of Emerging Medium-Voltage SiC MOSFETs on Medium-Voltage High-Power Industrial Motor Drives. IEEE Journal of Emerging and Selected Topics in Power Electronics 7:1371–1387

    Article  Google Scholar 

  36. Marzoughi A, Burgos R, Boroyevich D (2019) Characterization and Performance Evaluation of the State-of-the-Art 3.3 kV 30 A Full-SiC MOSFETs. IEEE Trans. Industry Appl. 55:575–583

    Article  CAS  Google Scholar 

  37. Zhang L, Yuan X, Wu X, Shi C, Zhang J, Zhang Y (2019) Performance Evaluation of High-Power SiC MOSFET Modules in Comparison to Si IGBT Modules. IEEE Trans Power Electron 34:1181–1196

    Article  Google Scholar 

  38. Chaujar R (2019) Analog and RF assessment of sub-20 nm 4H-SiC trench gate MOSFET for high frequency applications. International Journal of Electronics and Communications (AEÜ) 98:51–57

    Article  Google Scholar 

  39. Fei C, Bai S, Wang Q, Huang R, He Z, Liu H, Liu Q (2020) Influences of pre-oxidation nitrogen implantation and post-oxidation annealing on channel mobility of 4H-SiC MOSFETS. J Cryst Growth 531:125338

    Article  CAS  Google Scholar 

  40. Bencherif H, Dehimi L, Nour eddine Athamena, F. Pezzimenti, M.L. Megherbi, F.G.D. Corte (2021) Simulation Study of Carbon Vacancy Trapping Effect on Low Power 4H-SiC MOSFET Performance. Silicon 13:3629–3637

    Article  CAS  Google Scholar 

  41. Cabello M, Soler V, Rius G, Montserrat J, Rebollo J, Godignon P (2018) Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review. Mater Sci Semicond Process 78:22–31

    Article  CAS  Google Scholar 

  42. Yoshioka H, Senzaki J, Shimozato A, Tanaka Y, Okumura H (2015) N-channel field-effect mobility inversely proportional to the interface state density at the conduction band edges of SiO2/4H-SiC interfaces. AIP Adv 5:017109

    Article  Google Scholar 

  43. Ahyi AC, Modic A, Jiao C, Zheng Y, Liu G, Feldman LC, Dhar S (2015) Channel mobility improvement in 4H-SiC MOSFETs using a combination of surface counter-doping and NO annealing. Mater Sci Forum 821–823:693–696

    Article  Google Scholar 

  44. Cabello M, Soler V, Montserrat J, Rebollo J, Rafí JM, Godignon P (2017) Impact of boron diffusion on oxynitrided gate oxides in 4H-SiC metal-oxide semiconductor field-effect transistors. Appl Phys Lett 111:042104

    Article  Google Scholar 

  45. Okamoto D, Yano H, Hirata K, Hatayama T, Fuyuki T (2010) Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide. IEEE Electron Device Lett 31:710–712

    Article  CAS  Google Scholar 

  46. Rong H, Sharma YK, Dai T, Li F, Jennings MR, Russell SAO, Martin DM, Mawby PA (2016) High Temperature Nitridation of 4H-SiC MOSFETs. Mater Sci Forum 858:623–626

    Article  Google Scholar 

  47. Arith F, Urresti J, Vasilevskiy K, Olsen S, Wright N, O’Neill A (2018) Increased Mobility in Enhancement Mode 4H-SiC MOSFET Using a Thin SiO2/Al2O3 Gate Stack. IEEE Electron Device Lett 39:564–567

    Article  CAS  Google Scholar 

  48. Swanson LK, Fiorenza P, Giannazzo F, Frazzetto A, Roccaforte F (2012) Correlating macroscopic and nanoscale electrical modifications of SiO2/4H-SiC interfaces upon post-oxidation-annealing in N2O and POCl3. Appl Phys Lett 101:193501

    Article  Google Scholar 

  49. Suzuki T, Senzaki J, Hatakeyama T, Fukuda K, Shinohe T, Arai K (2009) Effect of Gate Wet Reoxidation on Reliability and Channel Mobility of Metal-oxide-semiconductor Field-effect Transistors Fabricated on 4H-SiC (000–1). Mater Sci Forum 600–603:791–794

    Google Scholar 

  50. Fiorenza P, Bongiorno C, Giannazzo F, Alessandrino MS, Messina A, Saggio M, Roccaforte F (2021) Interfacial electrical and chemical properties of deposited SiO2 layers in lateral implanted 4H-SiC MOSFETs subjected to different nitridations. Appl Surf Sci 557:149752

    Article  CAS  Google Scholar 

  51. Moon JH, Kang IH, Kim HW, Seok O, Bahng W (2020) Min-Woo Ha, TEOS-based low-pressure chemical vapor deposition for gate oxides in 4H–SiC MOSFETs using nitric oxide post-deposition annealing. Curr Appl Phys 20:1386–1390

    Article  Google Scholar 

  52. Modic A, Liu G, Ahyi AC, Zhou Y, Xu P, Hamilton MC, Williams JR, Feldman LC, Dhar S (2014) High Channel Mobility 4H-SiC MOSFETs by Antimony Counter-Doping. IEEE Electron Device Lett 35:894–896

    Article  CAS  Google Scholar 

  53. Tachiki K, Kaneko M, Kimoto T (2021) Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. Appl Phys Express 14:031001

    Article  CAS  Google Scholar 

  54. Rumyantsev SL, Shur MS, Levinshtein ME, Ivanov PA, Palmour JW, Agarwal AK, Hull BA (2009) Sei-Hyung Ryu, Channel mobility and on-resistance of vertical double implanted 4H-SiC MOSFETs at elevated temperatures. Semicond Sci Technol 24:075011

    Article  Google Scholar 

  55. Okamoto D, Sometani M, Harada S, Kosugi R, Yonezawa Y, Yano H (2014) Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation. IEEE Electron Device Lett 35:1176–1178

    Article  CAS  Google Scholar 

  56. Perez-Tomas A, Jennings MR, Gammon PM, Roberts GJ, Mawby PA, Millan J, Godignon P, Montserrat J, Mestres N (2008) SiC MOSFETs with thermally oxidized Ta2Si stacked on SiO2 as high-k gate insulator. Microelectron Eng 85:704–709

    Article  CAS  Google Scholar 

  57. Sveinbjörnsson EÖ, Gudjónsson G, Allerstam F, Ólafsson HÖ, Nilsson P-Å, Zirath H, Rödle T, Jos R (2006) High channel mobility 4H-SiC MOSFETs. Mater. Sci. Forum 527–529:961–966

    Article  Google Scholar 

  58. Castellazzi A, Funaki T, Kimoto T, Hikihara T (2012) Thermal instability effects in SiC Power MOSFETs. Microelectron Reliab 52:2414–2419

    Article  CAS  Google Scholar 

  59. Toussi ALM, Bahman AS, Iannuzzo F, Blaabjerg F (2020) Parameters sensitivity analysis of silicon carbide buck converters to extract features for condition monitoring. Microelectron Reliab 114:113910

    Article  Google Scholar 

  60. Agarwal A, Fatima H, Haney S (2007) Sei-Hyung Ryu. A New Degradation Mechanism in High-Voltage SiC Power MOSFETs, IEEE Electron Device Letters 28:587–589

    CAS  Google Scholar 

  61. You N, Liu X, Bai Y, Zhang Q, Liu P, Wang S (2021) Demonstration of non-negligible oxygen exchange in the thermal oxidation of silicon carbide. Vacuum 191:110403

    Article  CAS  Google Scholar 

  62. Zhou W, Zhong X, Sheng K (2014) High Temperature Stability and the Performance Degradation of SiC MOSFETs. IEEE Trans Power Electron 29:2329–2337

    Article  Google Scholar 

  63. Castellazzi A, Fayyaz A, Romano G, Yang L, Riccio M, Irace A (2016) SiC power MOSFETs performance, robustness and technology maturity. Microelectron Reliab 58:164–176

    Article  CAS  Google Scholar 

  64. Santini T, Morand S, Fouladirad M, Miller F, Grall A, Allard B (2017) Non-homogenous gamma process: Application to SiC MOSFET threshold voltage instability. Microelectron Reliab 75:14–19

    Article  CAS  Google Scholar 

  65. Aichinger T, Rescher G, Pobegen G (2018) Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs. Microelectron Reliab 80:68–78

    Article  CAS  Google Scholar 

  66. Molin Q, Kanoun M, Raynaud C, Morel H (2018) Measurement and analysis of SiC-MOSFET threshold voltage shift. Microelectron Reliab 88–90:656–660

    Article  Google Scholar 

  67. Okayama T, Arthur SD, Garrett JL, Rao MV (2008) Bias-stress induced threshold voltage and drain current instability in 4H–SiC DMOSFETs. Solid-State Electron 52:164–170

    Article  CAS  Google Scholar 

  68. Yu LC, Dunne GT, Matocha KS, Cheung KP, Suehle JS, Sheng K (2010) Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments. IEEE Trans Device Mater Reliab 10:418–426

    Article  CAS  Google Scholar 

  69. Lelis AJ, Habersat D, Green R, Ogunniyi A, Gurfinkel M, Suehle J, Goldsman N (2008) Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements. IEEE Trans Electron Devices 55:1835–1840

    Article  Google Scholar 

  70. Lelis AJ, Green R, Habersat DB, El M (2015) Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs. IEEE Trans Electron Devices 62:316–323

    Article  CAS  Google Scholar 

  71. Lelis AJ, Habersat D, Green R, Goldsman N (2009) Temperature-Dependence of SiC MOSFET Threshold-Voltage Instability. Mater Sci Forum 600–603:807–810

    Google Scholar 

  72. Kikuchi T, Ciappa M (2013) A new two-dimensional TCAD model for threshold instability in silicon carbide MOSFETs. Microelectron Reliab 53:1730–1734

    Article  CAS  Google Scholar 

  73. Yang L, Castellazzi A (2013) High temperature gate-bias and reverse-bias tests on SiC MOSFETs. Microelectron Reliab 53:1771–1773

    Article  CAS  Google Scholar 

  74. Fayyaz A, Yang L, Riccio M, Castellazzi A, Irace A (2014) Single pulse avalanche robustness and repetitive stress ageing of SiC power MOSFETs. Microelectron Reliab 54:2185–2190

    Article  CAS  Google Scholar 

  75. Kusumoto O, Ohoka A, Horikawa N, Tanaka K, Niwayama M, Uchida M, Kanzawa Y, Sawada K, Ueda T (2016) Reliability of Diode-Integrated SiC Power MOSFET(DioMOS). Microelectron Reliab 58:158–163

    Article  CAS  Google Scholar 

  76. Fayyaz A, Romano G, Castellazzi A (2016) Body diode reliability investigation of SiC power MOSFETs. Microelectron Reliab 64:530–534

    Article  CAS  Google Scholar 

  77. Matocha K, Banerjee S, Chatty K (2016) Advanced SiC Power MOSFETs Manufactured on 150mm SiC Wafers. Mater Sci Forum 858:803–806

    Article  Google Scholar 

  78. Ren Y, Yang X, Zhang F, Wang L, Wang K, Chen W, Zeng X, Pei Y (2017) Voltage Suppression in Wire-Bond-Based Multichip Phase-Leg SiC MOSFET Module Using Adjacent Decoupling Concept. IEEE Trans Industr Electron 64:8235–8246

    Article  Google Scholar 

  79. Camacho AP, Sala V, Ghorbani H, Romeral L (2017) A Novel Active Gate Driver for Improving SiC MOSFET Switching Trajectory. IEEE Trans Industr Electron 64:9032–9042

    Article  Google Scholar 

  80. Liao X, Li H, Yao R, Huang Z, Wang K (2019) Voltage Overshoot Suppression for SiC MOSFET-based DC Solid-state Circuit Breaker. IEEE Transactions on Components, Packaging and Manufacturing Technology 9:649–660

    Article  CAS  Google Scholar 

  81. Bencherif H, Dehimi L, Pezzimenti F, Corte FGD (2019) Temperature and SiO2/ 4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A 125:294

    Article  CAS  Google Scholar 

  82. Ibrahim A, Ousten JP, Lallemand R, Khatir Z (2016) Power cycling issues and challenges of SiC-MOSFET power modules in high temperature conditions. Microelectron Reliab 58:204–210

    Article  CAS  Google Scholar 

  83. Uchida K, Hiyoshi T, Nishiguchi T, Yamamoto H, Furumai M, Tsuno T, Mikamura Y (2016) Lifetime estimation of SiC MOSFETs under high temperature reverse bias test. Microelectron Reliab 64:425–428

    Article  CAS  Google Scholar 

  84. Gonzalez JO, Alatise O (2017) Impact of the gate driver voltage on temperature sensitive electrical parameters for condition monitoring of SiC power MOSFETs. Microelectron Reliab 76–77:470–474

    Article  Google Scholar 

  85. Kakarla B, Nida S, Mueting J, Ziemann T, Kovacevic-Badstuebner I, Grossner U (2017) Trade-off analysis of the p-base doping on ruggedness of SiC MOSFETs. Microelectron Reliab 76–77:267–271

    Article  Google Scholar 

  86. An J, Namai M, Yano H, Iwamuro N (2017) Investigation of Robustness Capability of −730 V P-Channel Vertical SiC Power MOSFET for Complementary Inverter Applications. IEEE Trans Electron Devices 64:4219–4225

    Article  CAS  Google Scholar 

  87. Shin-Ichiro Hayashi K, Wada (2020) Accelerated aging test for gate-oxide degradation in SiC MOSFETs for condition monitoring. Microelectron Reliab 114:113777

    Article  Google Scholar 

  88. Busatto G, Pasquale AD, Marciano D, Palazzo S, Sanseverino A, Velardi F (2020) Physical mechanisms for gate damage induced by heavy ions in SiC power MOSFET. Microelectron Reliab 114:113903

    Article  CAS  Google Scholar 

  89. Ouaida R, Berthou M, León J, Perpiñà X, Oge S, Brosselard P, Joubert C (2014) Gate Oxide Degradation of SiC MOSFET in Switching Conditions. IEEE Electron Device Lett 35:1284–1286

    Article  CAS  Google Scholar 

  90. Wen Y, Zhu H, Yang W, Deng X, Li X, Chen W, Zhang B (2019) Design and simulation on improving the reliability of gate oxide in SiC CDMOSFET. Diam Relat Mater 91:213–218

    Article  CAS  Google Scholar 

  91. Bencherif H, Pezzimenti F, Dehimi L, Corte FGD (2020) Analysis of 4H-SiC MOSFET with distinct high-k/4H-SiC interfaces under high temperature and carrier-trapping conditions. Appl Phys A 126:854

    Article  CAS  Google Scholar 

  92. Agarwal A, A, Kanale, B.J. Baliga (2021) Advanced 650 V SiC Power MOSFETs with 10 V Gate Drive compatible with Si Superjunction Devices. IEEE Trans Power Electron 36:3335–3345

    Article  Google Scholar 

  93. Fu H, Wei Z, Liu S, Wei J, Xu H, Ni L, Yang Z, Sun W (2021) 1200V 4H-SiC trench MOSFET with superior figure of merit and suppressed quasi-saturation effect. Microelectron Reliab 123:114249

    Article  CAS  Google Scholar 

  94. Jang SY, Kim J, Lee H, Kim KS (2020) Improved On On-state Resistance with Reliable ReverseCharacteristics in 12kV 4H 4H-SiC MOSFET by Selective Nitrogen Implantation Assisted Current Spreading Layer. Jpn J Appl Phys 59:046501

    Article  CAS  Google Scholar 

  95. Ni WJ, Wang XL, Feng C, Xiao HL, Jiang LJ, W.li, Q. Wang, M.S. Li, H. Schlichting, T. Erlbacher (2020) Design and Fabrication of 4H-Sic Mosfets with Optimized JFET and p-Body Design. Mater Sci Forum 1014:93–101

    Article  Google Scholar 

  96. Tan J, Cooper JA, Melloch MR (1998) High-Voltage Accumulation-Layer UMOSFET’s in 4H-SiC. IEEE Electron Device Lett 19:487–489

    Article  CAS  Google Scholar 

  97. Jiang H, Wei J, Dai X, Ke M, Deviny I, Mawby P (2016) SiC Trench MOSFET with Shielded Fin-Shaped Gate to Reduce Oxide Field and Switching Loss. IEEE Electron Device Lett 37:1324–1327

    Article  CAS  Google Scholar 

  98. Wang Y, Tian K, Hao Y (2015) Cheng-Hao Yu, Yan-Juan Liu, An Optimized Structure of 4H-SiC U-Shaped Trench Gate MOSFET. IEEE Trans Electron Devices 62:2774–2778

    Article  CAS  Google Scholar 

  99. Tian K, Hallén A, Qi J, Ma S, Fei X, Zhang A, Liu W (2019) An Improved 4H-SiC Trench-Gate MOSFET With Low ON-Resistance and Switching Loss. IEEE Trans Electron Devices 66:2307–2313

    Article  CAS  Google Scholar 

  100. Chowdhury S, Gant L, Powell B, Rangaswamy K, Matocha K (2018) Reliability and Ruggedness of 1200V SiC Planar Gate MOSFETs Fabricated in a High Volume CMOS Foundry. Mater Sci Forum 924:697–702

    Article  Google Scholar 

  101. Kanale A, Han KJ, Baliga BJ, Bhattacharya S (2019) Superior Short Circuit Performance of 1.2kV SiC JBSFETs Compared to 1.2kV SiC MOSFETs. Mater Sci Forum 963:797–800

    Article  Google Scholar 

  102. Nakao Y, Watanabe S, Miura N, Imaizumi M, Oomori T (2009) Investigation into Short-Circuit Ruggedness of 1.2 kV 4H-SiC MOSFETs. Mater Sci Forum 600–603:1123–1126

    Google Scholar 

  103. Othman D, Lefebvre S, Berkani M, Khatir Z, Ibrahim A, Bouzourene A (2013) Robustness of 12 kV SiC MOSFET devices. Microelectron Reliab 53:1735–1738

    Article  CAS  Google Scholar 

  104. Riccio M, Castellazzi A, Falco GD, Irace A (2013) Experimental analysis of electro-thermal instability in SiC Power MOSFETs. Microelectron Reliab 53:1739–1744

    Article  CAS  Google Scholar 

  105. Chen C, Labrousse D, Lefebvre S, Petit M, Buttay C, Morel H (2015) Study of short-circuit robustness of SiC MOSFETs, analysis of the failure modes and comparison with BJTs. Microelectron Reliab 55:1708–1713

    Article  CAS  Google Scholar 

  106. Wang Z, Shi X, Tolbert LM, Wang F, Liang Z, Costinett D, Blalock BJ (2016) Temperature Dependent Short Circuit Capability of Silicon Carbide (SiC) Power MOSFETs. IEEE Trans Power Electron 31:1555–1566

    Article  Google Scholar 

  107. Reigosa PD, Iannuzzo F, Luo H, Blaabjerg F (2016) A Short Circuit Safe Operation Area Identification Criterion for SiC MOSFET Power Modules. IEEE Trans Ind Appl 53:2880–2887

    Article  Google Scholar 

  108. Eni EP, Bęczkowski S, Nielsen SM, Kerekes T, Teodorescu R, Juluri RR, Julsgaard B, VanBrunt E, Hull B, Sabri S, Grider D, Uhrenfeldt C (2017) Short-Circuit Degradation of 10 kV 10 A SiC MOSFET. IEEE Trans Power Electron 32:9342–9354

    Article  Google Scholar 

  109. Kelley MD, Pushpakaran BN, Bilbao AV, Schrock JA, Bayne SB (2018) Single-pulse avalanche mode operation of 10-kV/10-A SiC MOSFET. Microelectron Reliab 81:174–180

    Article  CAS  Google Scholar 

  110. Du H, Reigosa PD, Iannuzzo F, Ceccarelli L (2018) Investigation on the degradation indicators of short-circuit tests in 1.2 kV SiC MOSFET power modules. Microelectron Reliab 88–90:661–665

    Article  Google Scholar 

  111. Hatta H, Tominaga T, Hino S, Miura N, Tomohisa S, Yamakawa S (2018) Suppression of Short-Circuit Current with Embedded Source Resistance in SiC-MOSFET. Mater Sci Forum 924:727–730

    Article  Google Scholar 

  112. Soler V, Cabello M, Banu V, Montserrat J, Rebollo J, Godignon P, Bianda E, Knoll L, Kranz L, Mihaila A (2019) Dynamic Characterization and Robustness Test of High Voltage SiC MOSFETs. Mater Sci Forum 963:768–772

    Article  Google Scholar 

  113. Kanale A, Baliga BJ (2021) Selection Methodology for Si Power MOSFETs used to Enhance SiC Power MOSFET Short Circuit Capability with the BaSIC(EMM) Topology. IEEE Trans Power Electron 36:8243–8252

    Article  Google Scholar 

  114. Green R, Urciuoli D, Lelis A (2018) Short-Circuit Robustness of SiC Trench MOSFETs. Mater Sci Forum 924:715–718

    Article  Google Scholar 

  115. Wei J, Liu S, Tong J, Zhang X, Sun W, Huang AQ (2020) Understanding Short-Circuit Failure Mechanism of Double-Trench SiC Power MOSFETs. IEEE Trans Electron Devices 67:5593–5599

    Article  CAS  Google Scholar 

  116. Liao X, Shen Q, Hu Y, Yang C, Chen X, Li H (2020) Fault protection for a SiC MOSFET based on gate voltage subjected to shortcircuit type II. Microelectron Reliab 107:113624

    Article  CAS  Google Scholar 

  117. Reigosa PD, Schulz N, Minamisawa R (2021) Short-circuit robustness of retrograde channel doping 1.2 kV SiC MOSFETs. Microelectron Reliab 120:114117

    Article  Google Scholar 

  118. Boige F, Richardeau F (2017) Gate leakage-current analysis and modelling of planar and trench power SiC MOSFET devices in extreme short-circuit operation. Microelectron Reliab 76–77:532–538

    Article  Google Scholar 

  119. Du H, Letz S, Baker N, Goetz T, Iannuzzo F, Schletz A (2020) Effect of short-circuit degradation on the remaining useful lifetime of SiC MOSFETs and its failure analysis. Microelectron Reliab 114:113784

    Article  CAS  Google Scholar 

  120. Wang B, Liu J, Li W, Zhang G, Geng Y, Wang J (2020) Multiple failure mode identification of SiC planar MOSFETs in short-circuit operation. Microelectron Reliab 114:113804

    Article  CAS  Google Scholar 

  121. Kanale A, Baliga BJ (2021) Theoretical Optimization of the Si GSS-DMM Device in the BaSIC Topology for SiC Power MOSFET Short-Circuit Capability Improvement. IEEE Access 9:70039–70047

    Article  Google Scholar 

  122. Liu J, Zhang G, Wang B, Li W, Wang J (2020) Gate Failure Physics of SiC MOSFETs under Short-circuit Stress. IEEE Electron Device Lett 41:103–106

    Article  Google Scholar 

  123. Mbarek S, Dherbécourt P, Latry O, Fouquet F (2017) Short-circuit robustness test and in depthmicrostructural analysis study of SiC MOSFET. Microelectron Reliab 76–77:527–531

    Article  Google Scholar 

  124. Berthou M, Bevilacqua P (2016) Jean-Baptiste Fonder, D Tournier, Repetitive Short-Circuit tests on SiC VMOS devices. Mater Sci Forum 858:812–816

    Article  Google Scholar 

  125. Bolotnikov A, Losee P, Ghandi R, Halverson A, Stevanovic L (2019) Optimization of 1700V SiC MOSFET for Short Circuit Ruggedness. Mater Sci Forum 963:801–804

    Article  Google Scholar 

  126. Azizi M, J.J.van Oorschot, T. Huiskamp, (2020) Ultrafast Switching of SiC MOSFETs for High-Voltage Pulsed-Power Circuits. IEEE Trans Plasma Sci 48:4262–4272

    Article  CAS  Google Scholar 

  127. Ding X, Chen F, Du M, Guo H, Ren S (2017) Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter. Appl Energy 201:270–283

    Article  CAS  Google Scholar 

  128. Abd El-Azeem SM, El-Ghanam SM (2020) Comparative study of gallium nitride and silicon carbide MOSFETs as power switching applications under cryogenic conditions. Cryogenics 107:103071

    Article  CAS  Google Scholar 

  129. Lebedev AA, Kozlovski VV, Levinshtein ME, Ivanov AE, Strel’chuk AM, Zubov AV, Fursin L (2020) Impact of 0.9 MeV electron irradiation on main properties of high voltage vertical power 4H-SiC MOSFETs. Radiat Phys Chem 177:109200

    Article  CAS  Google Scholar 

  130. Zeng Z, Shao W, Chen H, Hu B, Chen W, Li H, Ran L (2017) Changes and challenges of photovoltaic inverter with silicon carbide device. Renew Sustain Energy Rev 78:624–639

    Article  CAS  Google Scholar 

  131. Zhang Z, Yao K, Ke G, Zhang K, Gao Z, Wang Y, Ren X, Chen Q (2020) SiC MOSFETs Gate Driver With Minimum Propagation Delay Time and Auxiliary Power Supply With Wide Input Voltage Range for High-Temperature Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics 8:417–428

    Article  Google Scholar 

  132. Mocevic S, Yu J, Xu Y, Stewart J, Wang J, Cvetkovic I, Dong D, Burgos R, Boroyevich D (2021) Power-Cell Design and Assessment Methodology based on a High-Current 10 kV SiC MOSFET Half-Bridge Module. IEEE Journal of Emerging and Selected Topics in Power Electronics 9:3916–3935

    Article  Google Scholar 

  133. Qi J, Yang X, Li X, Chen W, Long T, Tian K, Hou X, Wang X (2021) Comprehensive Assessment of Avalanche Operating Boundary of SiC Planar/Trench MOSFET in Cryogenic Applications. IEEE Trans Power Electron 36:6954–6966

    Article  Google Scholar 

  134. Rashid AU, Hossain Md Maksudul, Emon AI, Mantooth A (2021) Datasheet-driven Compact Model of Silicon Carbide Power MOSFET Including Third Quadrant Behavior. IEEE Trans Power Electron 36:11748–11762

    Article  Google Scholar 

  135. Miyazaki T, Otake H, Nakakohara Y, Tsuruya M, Nakahara K (2018) Fanless Operating Trans-Linked Interleaved 5 kW Inverter Using SiC MOSFETs to Achieve 99% Power Conversion Efficiency. IEEE Trans Industr Electron 65:9429–9437

    Article  Google Scholar 

  136. Hamada K, Nagao M, Ajioka M, Kawai F (2015) SiC—Emerging Power Device Technology for Next-Generation Electrically Powered Environmentally Friendly Vehicles. IEEE Trans Electron Devices 62:278–285

    Article  CAS  Google Scholar 

  137. Li C, Chen S, Luo H, Li C, Li W, He X (2021) A Modified RC Snubber With Coupled Inductor for Active Voltage Balancing of Series-Connected SiC MOSFETs. IEEE Trans Power Electron 36:11208–11220

    Article  Google Scholar 

  138. Zhang Q, Callanan R, Das MK, Sei-Hyung Ryu AK, Agarwal J.W. Palmour (2010) SiC Power Devices for Microgrids. IEEE Trans Power Electron 25:2889–2896

    Article  Google Scholar 

  139. Jin S, Zhang D, Bao Z, Liu X (2018) High Dynamic Performance Solar Array Simulator based on a SiC MOSFET Linear Power Stage. IEEE Trans Power Electron 33:1682–1695

    Article  Google Scholar 

  140. Ding X, Du M, Zhou T, Guo H, Zhang C (2017) Comprehensive comparison between silicon carbide MOSFETs and silicon IGBTs based traction systems for electric vehicles. Appl Energy 194:626–634

    Article  CAS  Google Scholar 

  141. Ding X, Lu P, Shan Z (2021) A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles. Appl Energy 291:116827

    Article  CAS  Google Scholar 

  142. Wang R, Tan L, Li C, Huang T, Li H, Huang X (2021) Analysis, Design, and Implementation of Junction Temperature Fluctuation Tracking Suppression Strategy for SiC MOSFETs in Wireless High-Power Transfer. IEEE Trans Power Electron 36:1193–1204

    Article  Google Scholar 

  143. Chen X, Jiang S, Chen Y, Shen B, Zhang M, Gou H, Lei Y, Zhang D (2022) Steady-state over-current safe operation area (SOA) of the SiC MOSFET at cryogenic and room temperatures. Cryogenics 122:103424. https://doi.org/10.1016/j.cryogenics.2022.103424

  144. Ball DR, Galloway KF, Johnson RA, Alles ML, Sternberg AL, Witulski AF, Reed RA, Schrimpf RD, Hutson JM, Lauenstein J-M (2021) Effects of Breakdown Voltage on Single-Event Burnout Tolerance of High-Voltage SiC Power MOSFETs. IEEE Trans Nuclear Sci 68:1430–1435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mr.Sreejith.S, Dr.J Ajayan and Dr.Babu Devasenapati.S have role in Conceptualization, Methodology, Writing Original Draft, Validation and Investigation. Dr.B.Sivasankari and Dr.Shubham Tayal have the credits to Software, Formal analysis, Resources, Data Curation, Writing Review and Editing.

Corresponding author

Correspondence to S. Sreejith.

Ethics declarations

Ethics approval and consent to participate

“All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the comparable ethical standards.”

“For this type of study, formal consent is not required.”

Consent for publication

Authors give consent for the publication of the Submitted Research article in Silicon.

Competing interests

The authors declare that they have no known competing financial interests.

Conflicts of interest

The authors declare that there is no conflict of interest reported in this paper.

Research involving Human Participants and/or Animals

“Not Applicable”.

Informed consent

“Not Applicable”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreejith, S., Ajayan, J., Devasenapati, S.B. et al. A Critical Review on Reliability and Short Circuit Robustness of Silicon Carbide Power MOSFETs. Silicon 15, 623–637 (2023). https://doi.org/10.1007/s12633-022-02039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02039-1

Keywords

Navigation