Skip to main content
Log in

Investigation of a Near-Perfect Quad-Band Polarization-Insensitive Metamaterial Absorber Based on Dual-T Circular Shaped Resonator Array Designed on a Silicon Substrate for C-, X- and Ku-bands Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Multi-band metamaterial absorbers (MMAs) are increasingly becoming main devices for many electrical systems. Optimizing the electromagnetic qualities of this type of absorber in the microwave regime is a relatively complex operation. In this paper a quad-band metamaterial absorber is provided for applications covering the microwave C-, X- and Ku- frequency bands. The proposed MMA is based on \(\left(8\times 8\right)\) array basic cells. Each cell is formed by a split-ring metamaterial resonator (SRR), the chosen shape for the SRR is the circular dual-T (DT-SRR) interlinked with the rectangular ring. The DT-SRR is etched on the upper side of the Silicon substrate with relative electrical permittivity of 11.7. On the bottom side of the same substrate, a ground plane for full copper surface is printed to prevent transmission. The basic cell has the electrical dimensions of the order of \(\left({0.385 \lambda }_{0}\times 0.385{\lambda }_{0}\times 0.032{ \lambda }_{0}\right)\) where \({\lambda }_{0}\) is calculated at the lowest operating frequency of 6.43 GHz in the C-band. The electromagnetic qualities of our MMA are expired by the behavior of each basic cell which represents a left hand medium and a negative permeability \(\left(\mu <0\right)\) for magnetic resonances at the frequencies 6.43, 9.10, 11.86 and 14.67 GHz. The obtained results simulations performed by the High-Frequency Structure Simulator (HFSS) computer show an insensitive-polarization dual-band behavior for our proposed MMA. The spectral responses of the proposed absorber cover the C-, X- and Ku-bands for important absorption coefficients of the order of 89.40, 99.66, 99.10 and 95.22%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Edries M, Hesham AM, Hekal S, El-morsy MA, Mansour H (2021) A tri-band metamaterial absorber for radar cross section reduction. Inter J Microw Opti Tech 16(2):184–191

    Google Scholar 

  2. Kong X, Jiang S, Kong L, Wang Q, Hu H, Zhang X, Zhao X (2020) Transparent metamaterial absorber with broadband radar cross section (RCS) reduction for solar arrays. IET Microw Ante Propag 14(3):1580–1586. https://doi.org/10.1049/iet-map.2020.0369

    Article  Google Scholar 

  3. Baskey HB, Johari E, Akhtar MJ (2017) Metamaterial Structure Integrated With a Dielectric Absorber for Wideband Reduction of Antennas Radar Cross Section. IEEE Trans Electromagnet Compati 59(4):1060–1069. https://doi.org/10.1109/TEMC.2016.2639060

    Article  Google Scholar 

  4. Wang Z, Dong Y, Itoh T (2021) Metamaterial-based miniaturised circularly polarised antennas for RFID application. IET Microw Ante Propag 15:547–559. https://doi.org/10.1049/mia2.12064

    Article  Google Scholar 

  5. Yang K, Wang M, Pu M et al (2016) Circular polarization sensitive absorbers based on graphene. Sci Rep 6:23897. https://doi.org/10.1038/srep23897

    Article  CAS  Google Scholar 

  6. Wang BX, Xie Q, Dong G et al (2019) Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure. J Electron Mater 48:2209–2214. https://doi.org/10.1007/s11664-019-06968-3

    Article  CAS  Google Scholar 

  7. Asghariana R, Zakeria B, Karimib O (2018) Modified hexagonal triple-band metamaterial absorber with wide-angle stability. AEU-Inter J Electron Comm 87:119–123. https://doi.org/10.1016/j.aeue.2018.02.013

    Article  Google Scholar 

  8. Jadeja R, Charola S, Patel SK et al (2020) Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. J Mater Sci 55:3462–3469. https://doi.org/10.1007/s10853-019-04269-y

    Article  CAS  Google Scholar 

  9. Wu J (2019) Tunable multi-band terahertz absorber based on graphene nano-ribbon metamaterial. Phys Lett A 383. https://doi.org/10.1016/j.physleta.2019.05.020

  10. Marquez R, Medina F, Raffi R (2002) Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 65:144440. https://doi.org/10.1103/PhysRevB.65.144440

  11. Xieab P, Suna W, Liu Y et al (2018) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606. https://doi.org/10.1016/j.carbon.2017.12.009

    Article  CAS  Google Scholar 

  12. Hindy MA, ElSagheer RM, Yasseen MS (2018) Experimental retrieval of the negative parameters “Permittivity and Permeability” based on a circular split ring resonator (CSRR) left handed metamaterial. J Electric Syst Inform Tech 5(2):208–215. https://doi.org/10.1016/j.jesit.2017.05.004

    Article  Google Scholar 

  13. Mulla B, Sabah C (2016) Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting. Plasmonics 11:1313–1321. https://doi.org/10.1007/s11468-015-0177-y

    Article  CAS  Google Scholar 

  14. Ye Q, Liu Y et al (2012) Multi-band metamaterial absorber made of multi-gap SRRs structure. Appl Phys A 107:155–160. https://doi.org/10.1007/s00339-012-6796-7

    Article  CAS  Google Scholar 

  15. Zong-Cheng X, Run-Mei G, Chun-Feng D et al (2014) Multiband Metamaterial Absorber at Terahertz Frequencies. Chin Phys Lett 31. https://doi.org/10.1088/0256307X/31/5/054205

  16. Xu F, Lin L, Fang J, Wang F, Su J, Li S, Pan M (2022) High sensitivity dual-band perfect plasmon absorber based on graphene split-ring-resonator. Diam Relate Mater 123:108789. https://doi.org/10.1016/j.diamond.2021.108789

    Article  CAS  Google Scholar 

  17. Berka M, Rouabhi AY, Bendaoudi A, Mahdjoub Z (2022) Triangular split ring resonators for X-band applications and operations. J Nano-Electron Phys 14(1):1–5. https://doi.org/10.21272/jnep.14(1).01007

    Article  CAS  Google Scholar 

  18. Han X, Zhang Z, Qu X (2021) A novel miniaturized tri-band metamaterial THz absorber with angular and polarization stability. Optik 228:166086. https://doi.org/10.1016/j.ijleo.2020.166086

    Article  CAS  Google Scholar 

  19. He Y, Wang BX, Lou P, Zhu H (2020) Multiple-band absorber enabled by new type of metamaterial resonator formed by metallic split ring embedded with rectangle patch. Resul Phys 18:103251. https://doi.org/10.1016/j.rinp.2020.103251

    Article  Google Scholar 

  20. Bait-Suwailam MM (2019) in Electromagnetic Fields and Waves. IntechOpen. https://doi.org/10.5772/intechopen.84170

    Article  Google Scholar 

  21. Berka M, Hebali M, Baghdad-Bey A, Mahdjoub Z (2018) Optimization of Technological Qualities of Photovoltaic Cells Based on Absorber Metamaterial (SRRs) Resonators. Majlesi J Mechatron Sys 7(3): 9–16. http://journals.iaumajlesi.ac.ir/ms/index/index.php/ms/article/view/377

  22. Yin S, Zhu J, Xu W, Jiang W, Yuan J, Yin G, Xie L, Ying Y, Ma Y (2015) High-performance terahertz wave absorbers made of silicon-based metamaterials. Appl Phys Lett 107(7):073903. https://doi.org/10.1063/1.4929151

    Article  CAS  Google Scholar 

  23. Liu H, Luo K, Tang S, Peng D, Hu F, Tu L (2018) An ultra-wideband THz/IR metamaterial absorber based on doped silicon. Mater (MDPI) 11(12):2590. https://doi.org/10.3390/ma11122590

    Article  CAS  Google Scholar 

  24. Cheng Y, Du C (2019) Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region. Optic Mater 98:109441. https://doi.org/10.1016/j.optmat.2019.109441

    Article  CAS  Google Scholar 

  25. Liu Y, Chen Y, Liand J, Hung TC, Jianping L (2012) Study of energy absorption on solar cell using metamaterials. Solar Energ 86: 1586e99.2012

    Article  Google Scholar 

  26. Khuyen X et al (2018) Ultra-subwavelength thickness for dual/tripleband metamaterial absorber at very low frequency. Sci Rep 8. https://doi.org/10.1038/s41598-018-29896-4.2018

  27. Pozar DM (2009) Microwave engineering, 2nd ed. John Wiley & Sons, Hoboken

  28. Li SJ et al (2018) Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale Resea Lett 13(1):386

    Article  Google Scholar 

  29. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans Instrum Meas 19:377–382. https://doi.org/10.1109/TIM.1970.4313932

  30. Weir WB (1974) Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE 62:33–36. https://doi.org/10.1109/PROC.1974.9382

  31. Luukkonen O, Maslovski S, Tretyakov S (2011) A stepwise nicolson–ross–weir-based material parameter extraction method. IEEE Ant Wirel Propag Lett 10:1295. https://doi.org/10.1109/LAWP.2011.2175897

    Article  Google Scholar 

  32. Hannan S, Islam MT, Almutairi AF (2020) Wide bandwidth angle-and polarization-insensitive symmetric metamaterial absorber for X and Ku band applications. Sci Rep 10:10338. https://doi.org/10.1038/s41598-020-67262-5

    Article  CAS  Google Scholar 

  33. Garg R, Bhartia P, Bahl IJ, Ittipiboon A (2001) Microstrip Antenna Design Handbook. Artech House

    Google Scholar 

  34. Dhar N, Rahman MA, Hossain M (2020) Design and exploration of functioning of a D-Z shaped SNG multiband metamaterial for L-, S-, and X-bands applications. SN Applied Science 2(6):1–16

    Article  Google Scholar 

  35. Gay-Balmaz P, Martin OJ (2002) Electromagnetic resonances in individual and coupled split-ring resonators. J Appl Phys 92(5):2929–2936. https://doi.org/10.1063/1.1497452

    Article  CAS  Google Scholar 

  36. Zeng X, Zhang L, Wan G, Gao M (2017) Active metamaterial absorber with controllable polarization and frequency. Electron Lett 53(16):1085–1086. https://doi.org/10.1049/el.2017.1618

    Article  CAS  Google Scholar 

  37. Bahl IJ (2003) Lumped elements for RF and microwave circuits. Artech House Microwave Library, Boston, pp 229–252

  38. Bilal RM, Baqir MA, Iftikhar A, Naqvi SA, Mughal MJ, Ali MM (2022) Polarization-controllable and angle-insensitive multiband Yagi-Uda-shaped metamaterial absorber in the microwave regime. Optic Mater Express 12(2):798–810. https://doi.org/10.1364/OME.451073

    Article  CAS  Google Scholar 

  39. Hannan S, Islam MT (2020) Modified-segmented split-ring based polarization and angle-insensitive multi-band metamaterial absorber for X, Ku and K band applications. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3013011

  40. Edries M, Hesham AM, Sherif M, Hekal S, El-Morsy MA, Hala A, Mansour H (2020) A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization. IEEE Access 8:143723–143733. https://doi.org/10.1109/ACCESS.2020.3009904

    Article  Google Scholar 

  41. Ren YH, Ding J, Guo C-J, Qu Y, Song Y-C (2017) Design of a quad band wide-angle microwave metamaterial absorber. J Electron Mater 46(1):370–376. https://doi.org/10.1007/s11664-016-4852-3

    Article  CAS  Google Scholar 

  42. Hannan S (2022) A filling-factor engineered, perfect metamaterial absorber for multiple applications at frequencies set by IEEE in C and X bands. J Mater Resea Tech (JMR&T) 19:934–946. https://doi.org/10.1016/j.jmrt.2022.05.071

    Article  CAS  Google Scholar 

  43. Hannan S, Islam TM, Iqbal Faruque MR, Rmili H (2021) Polarization-independent perfect metamaterial absorber for C, X and Ku band applications. J Mater Resea Tech (JMR&T) 15:3722–3732. https://doi.org/10.1016/j.jmrt.2021.10.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian Ministry of Higher Education and Scientific Research and the General Directorate of Scientific Research and Technological Development (DGRSDT) via funding through the PRFU Project No. A25N01UN220120200001.

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed mutually regarding this paper.

Corresponding author

Correspondence to Mohammed Berka.

Ethics declarations

Ethics Approval

Not applicable (as the results of studies does not involve any human or animal).

Consent to Participate

Not applicable (as the results of studies does not involve any human or animal).

Consent for Publication

Not applicable (as the results of studies does not involve any human or animal).

Conflict of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennaoum, M., Berka, M., Bendaoudi, A. et al. Investigation of a Near-Perfect Quad-Band Polarization-Insensitive Metamaterial Absorber Based on Dual-T Circular Shaped Resonator Array Designed on a Silicon Substrate for C-, X- and Ku-bands Applications. Silicon 15, 699–712 (2023). https://doi.org/10.1007/s12633-022-02038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02038-2

Keywords

Navigation