Skip to main content
Log in

Carbon Nanotube (10, 0) and Silicon Nanotube (7, 0) as a Novel Material for Drug Delivery of Substituted Eugenols as Antioxidant Drugs

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The potential of CNT(10, 0) and SiNT(7, 0) and their metal doped CNT(10, 0) and SiNT(7, 0) to adsorb the NH2, OH and Ethyl eugenols are examined. The antioxidant potential of NH2-, OH- and ethyl-eugenols are examined in solvent. The NH2-eugenol has the best potential to adsorb on CNT(10, 0) and SiNT(7, 0). The NH2 are stabilized the radicals and radical cations and NH2-eugenol has less BDE and IP and higher antioxidant potential. The adsorptions of NH2-, OH- and ethyl-eugenols on CNT(10, 0) and SiNT(7, 0) are effective processes. The Ead of NH2-, OH- and ethyl-eugenols on SiNT(7, 0) are higher than corresponding values on CNT(10, 0). Finally, Zn doped SiNT(7, 0) and CNT(10, 0) are proposed as suitable compounds for delivery of eugenol derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

CNT:

Carbon Nanotube

SiNT:

Silicon Nanotube

BDE:

Bond dissociation Energy

IP:

Ionization potential

Zn:

Zinc

Fe:

Iron

Cu:

Copper

Ni:

Nickel

Ead :

Adsorption Energy

PCM:

Polarization Continuum Model

DFT:

Density Functional Theory

B3LYP:

Becke, 3-parameter, Lee–Yang–Parr

DMSO:

Dimethyl sulfoxide

eV:

Electron Volt

References

  1. Qiuyue Z, Chunmei T (2018) J Phys Chem C 122:22838–22848

    Article  Google Scholar 

  2. Qixiang Z, Chunmei T, Ling F (2019) Appl Surf Sci 497:143723

    Article  Google Scholar 

  3. Yunhui W, Kai Z, Zhihong Y (2019) Chem Phys Lett 734:136733

    Article  Google Scholar 

  4. Gen-Cai G, Ru-Zhi W, Ming Z (2019) Appl Sur Sci 475:102–108

    Article  Google Scholar 

  5. Scott LT, Jackson EA, Zhang QY (2012) J Am Chem Soc 134:107–110

    Article  CAS  Google Scholar 

  6. Omachi H, Nakayama T, Takahashi E (2013) Nat Chem 5:572–576

    Article  CAS  Google Scholar 

  7. Yu XC, Zhang J, Choi W, Choi JY (2010) Nano Lett 10:3343–3349

    Article  CAS  Google Scholar 

  8. Liu BL, Liu J, Li HB, Bhola R (2015) Nano Lett 15:586–595

    Article  CAS  Google Scholar 

  9. Sanchez-Valencia JR, Dienel T, Groning (2014) Nature 512:61–64

  10. Peifei W, Songbai LJ (2020) Agri Food Chem 68:9953–9960

  11. Mickaël L, Luis J, López GJ (2010) Agri Food Chem 58:2869–2876

  12. Han R-M, Tian Y-X (2009) J Agri Food Chem 57:3780–3785

  13. Zai-Qun L (2022) Food Chem 380:132143

  14. Baoyu L, Guishan LJ (2021) Agri Food Chem 69:12956–12965

  15. Junfei X, Yuliang Z (2021) ACS Sust Chem Eng 9:5000–5009

  16. Yuanchao L, Tao S (2021) ACS Sust Chem Eng 9:4531–4542

  17. Atsushi Y (2020) ACS Omega 5:18826–18830

  18. Xiaoliang Q, Mengying ZJ (2020) Agri Food Chem 68:3770–3778

  19. Divya S, Toma S (2014) RSC Adv 4:15225–15235

    Article  Google Scholar 

  20. George V, Papamokos. (2004) J Phys Chem A 108:7291–7300

    Article  Google Scholar 

  21. Omar A, Byung Woo C (2018) RSC Adv 8:39414–39420

    Article  Google Scholar 

  22. Younes V (2016) Comput Theor Chem 1091:169–175

  23. Joakim H (2017) J Phys Chem C 121:27483–27492

    Article  Google Scholar 

  24. Hossein T, Dana S (2015) J Phys Chem C 119:6502–6510

    Google Scholar 

  25. Daniel GA, Smith KP (2015) J Phys Chem C 119:4934–4948

  26. Daniel GA, Smith KP (2014) J Phys Chem C 118:544–550

    Article  Google Scholar 

  27. Jian-Ying Z (2013) J Phys Chem A 117:12519–12528

    Article  Google Scholar 

  28. Renato C, Ana Laura E (2018) Carbon 127:312–319

    Article  Google Scholar 

  29. Kostiantyn V (2020) ACS Energy Lett 5:545–549

    Article  Google Scholar 

  30. Sumit K, Preeti B (2019) J Phys Chem C 123:23863–23871

    Article  Google Scholar 

  31. Zhou B, Liu Z, Li C, Jiang L, Zhou Y, Yu J (2021) Adv Electron Mater 7:2100233

  32. He J, Xu P, Zhou R, Li H, Zu H, Zhang J, Wang F (2021) Adv Electron Mater 7:2100997

  33. Ji X, Guo J, Ding D, Gao J, Hao L, Guo X, Liu Y (2022) J Food Meas Charact. https://doi.org/10.1007/s11694-022-01288-3

  34. Lai W, Tang R, Wong W (2020) Pharmaceutics 12:725

  35. Lai W, Gui D, Wong M, Döring A, Wong WJ (2021) Drug Deliv Sci Technol 63:102428

  36. Xiaolong J, Baixiang P, Hehui D, Bingbing C, Hui N, Yizhe Y (2021) Food Rev Int. https://doi.org/10.1080/87559129.2021.1904973

  37. Mudiyanselage SE, Nguyen PHD, Rajabi MS, Akhavian R (2021) Electronics 10:2558

  38. Jiang J, Zhang T, Chen D (2021) IEEE Trans Power Electron 36:10214–10223

  39. Li X, Shang Z, Peng F, Li L, Zhao Y, Liu Z (2021) J Power Sources 512:230512

  40. Guo H, Zhang Y (2020) IEEE Access 8:115383–115392

  41. Kumar Prasad V (2022) J Chem Theo Comput 18:2913–2930

    Article  Google Scholar 

  42. Zheng D, Yuan Y (2022) J Phys Chem A 126:2609–2617

    Article  CAS  Google Scholar 

  43. Macchia A (2022) ACS Omega 7:8808–8818

    Article  CAS  Google Scholar 

  44. Sadhukhan D (2021) J Phys Chem A 125:10351–10358

    Article  CAS  Google Scholar 

  45. Jalab R, Saad MA (2021) ACS Omega 6:32120–32132

    Article  CAS  Google Scholar 

  46. Oliveira M, Alves J (2021) J Chem Theo Comput 17:6876–6885

    Article  Google Scholar 

  47. Mehta N, Fellowes T (2021) J Chem Theo Comput 17:2783–2806

    Article  CAS  Google Scholar 

  48. Elmi A, Cockroft SL (2021) Accou Chem Res 54:92–103

    Article  CAS  Google Scholar 

  49. Pracht P, Grant DF (2020) J Chem Theo Comput 16:7044–7060

    Article  CAS  Google Scholar 

  50. Haris Mahyuddin M (2020) J Phys Chem C 124:18112–18125

    Article  Google Scholar 

  51. He B, Zhou. H (2020) ACS Omega 5:11618–11628

    Article  CAS  Google Scholar 

  52. Cummins PL, Gready. JE (2020) J Phys Chem B 124:3015–3026

    Article  CAS  Google Scholar 

  53. Wappett DA (2019) J Phys Chem A 123:7057–7074

    Article  CAS  Google Scholar 

  54. Ahn S, Hong M (2019) Chem Rev 119:6509–6560

    Article  CAS  Google Scholar 

  55. Li W, Miao W (2019) J Chem Infor Mod 59:1849–1857

    Article  CAS  Google Scholar 

  56. Peng Y, Xu Z, Wang M, Li Z, Peng J, Luo J, Yang Z (2021) Renew Energy 172:551–563

    Article  Google Scholar 

  57. Zhang X, Tang Y, Zhang F, Lee C (2016) Adv Energy Mater 6:1502588

    Article  Google Scholar 

  58. Ji B, Zhang F, Song X, Tang Y (2017) Adv Mater 29:1700519

    Article  Google Scholar 

  59. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H (2018) Nat Chem 10:667–672

    Article  CAS  Google Scholar 

  60. Gong D, Wei C, Xie D, Tang (2022) Y Chem Eng J 431:133444

    Article  CAS  Google Scholar 

  61. Ji B, Gou J, Zheng Y, Zhou X, Tang Y (2022) Adv Mater. https://doi.org/10.1002/adma.202202714

    Article  Google Scholar 

  62. Li J, Wang F, He Y (2020) Sustainability 12:10537

    Article  CAS  Google Scholar 

  63. Huang Z, Luo P, Zheng H (2022) Ceram Int 48:8325–8330

    Article  CAS  Google Scholar 

  64. Huang Z, Luo P, Zheng H, Lyu Z (2022) Ceram Int. https://doi.org/10.1016/j.ceramint.2022.03.151

    Article  Google Scholar 

  65. Hao W, Xie J (2021) J Electrochem Energy Convers Storage. https://doi.org/10.1115/1.4049238

    Article  Google Scholar 

  66. Liu L, Meng X, Miao Z, Zhou S (2022) Case Stud Therm Eng 31:101836

    Article  Google Scholar 

  67. Li Z, Li H, Zhu X, Peng Z, Zhang G, Yang J, Lan H (2022) Adv Sci. https://doi.org/10.1002/advs.202105331

    Article  Google Scholar 

  68. Mudiyanselage SE, Nguyen PHD, Rajabi MS, Akhavian R (2021) Electronics 10:2558

    Article  Google Scholar 

  69. Wang X, Tang S, Chai S, Wang P, Qin J, Pei W, Huang C (2021) Carbohydr Polym 270:118342

  70. Dong H, Zheng L, Yu P, Jiang Q, Wu C, Yin B (2019) ACS Sustain Chem Eng 8:256–266

  71. Huang C, Su Y, Shi J, Yuan C, Zhai S, Yong Q (2019) New J Chem 43:3520–3528

  72. Huang C, Tang S, Zhang W, Tao Y, Yong Q (2018) ACS Sustain Chem Eng 6:12522–12531

  73. Niknam B, Aboutalebi FH, Ma W, Nejad RM (2021) Structures 34:4986–4998

  74. Ma W (2021) Ph D, Thesis University of Nevada, Las Vegas

Download references

Acknowledgements

I thank my university for computational help.

Author information

Authors and Affiliations

Authors

Contributions

Hussein (Funding acquisition, Investigation, Methodology), Mohammed (Project administration, Resources, Software), Mahdi (Supervision, Validation, Visualization), Al Mashhadani (Conceptualization, Data curation, Formal analysis), Abood (Funding acquisition, Software, Validation), Zhao (Conceptualization, Data curation, Formal analysis).

Corresponding author

Correspondence to Xiaoguang Zhao.

Ethics declarations

Conflicts of Interest/Competing Interests

Not applicable.

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Ethical Approval

All procedures performed in studies involving human participants are in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, S.A., Mohammed, M.A., Mahdi, M.M. et al. Carbon Nanotube (10, 0) and Silicon Nanotube (7, 0) as a Novel Material for Drug Delivery of Substituted Eugenols as Antioxidant Drugs. Silicon 15, 285–291 (2023). https://doi.org/10.1007/s12633-022-02026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02026-6

Keywords

Navigation