Skip to main content
Log in

Engineering delivery of pantaprazole drug using multi-walled carbon nanotubes: an experimental and theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Todays, using nano-based drug delivery systems as suitable carriers can help in controlling release of drug to target cells. In current study, multi-walled carbon nanotube (MWCNTs) have been proposed as a suitable carrier (adsorbent) for improvement of pantoprazole (PTZ) drug delivery. The PTZ adsorption on the MWCNT has been assayed using three well-known Langmuir, Freundlich, and Temkin isotherm models. High value of isotherm constant (KL = 0.143 L mg−1) and low separation factor (RL = 0.24) imply strong and desirable adsorption of the PTZ on the MWCNT with 1.00 mg L−1 concentration at 298-K temperature and acidic medium, pH = 6.0. More importantly, decreasing the PTZ adsorption and dehydrogenation mainly result from increasing pH factor. Negative thermodynamic parameter such as ΔH =  − 6.31 kJ mol−1 based on Van’t Hoff equation shows that the PTZ adsorption has fast kinetic in pseudo-second-order kinetic model (R2 = 1.00) and exothermic processes at 25 min. In density functional theory framework, high global softness (0.24 eV) of the PTZ and more negative adsorption energy (− 6.02 kJ mol−1) reveal that this compound transfers by using MWCNT. These issues imply that MWCNT is suitable carrier in order to control release of the PTZ drug to target cells without side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Detail of experimental and theoretical parts are given in supporting information.

Code availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15:153–172. https://doi.org/10.2174/138161209787002870

    Article  CAS  PubMed  Google Scholar 

  2. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68. https://doi.org/10.1021/ar700089b

    Article  CAS  PubMed  Google Scholar 

  3. Xu L, Jiang S, Wu J, Zou Q (2021) An in silico approach to identification, categorization and prediction of nucleic acid binding proteins. Brief Bioinform 22. https://doi.org/10.1093/bib/bbaa171

  4. Karimi EZ, Zebarjad SM, Khaki JV, Izadi H (2010) Production of carbon nanotubes using mechanical milling in the presence of an exothermic reaction. J Alloys Compd 505:37–42. https://doi.org/10.1016/j.jallcom.2010.06.021

    Article  CAS  Google Scholar 

  5. Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185:22–36. https://doi.org/10.1016/j.jconrel.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadi M, Vadi M, Bagehri N et al (2021) Kinetics and thermodynamics adsorption of oxazepam drug on the multi-walled carbon nanotube. J Chinese Chem Soc 68:799–805. https://doi.org/10.1002/jccs.202000407

    Article  CAS  Google Scholar 

  7. Ghoreishi R, Kia M (2019) Chemical reactivity and adsorption properties of pro-carbazine anti-cancer drug on gallium-doped nanotubes: a quantum chemical study. J Mol Model 25:46. https://doi.org/10.1007/s00894-018-3914-2

    Article  CAS  PubMed  Google Scholar 

  8. Esmaeili S, Samadizadeh M, Khaleghian M (2020) Evaluating role of the x–π (x = π and/or CH) stacking interactions in adsorption of the (4E,4E)-4-(4-hydroxyphenyldiazenyl)-N-((furan-2-Yl)methylene)benzenamine antibacterial in armchair boron nitride nanotube. Chem Pap 74:2991–3000. https://doi.org/10.1007/s11696-020-01137-x

    Article  CAS  Google Scholar 

  9. Scheibe B, Borowiak-Palen E, Kalenczuk RJ (2010) Enhancement of thermal stability of multiwalled carbon nanotubes via different silanization routes. J Alloys Compd 500:117–124. https://doi.org/10.1016/j.jallcom.2010.03.229

    Article  CAS  Google Scholar 

  10. Wang X-F, Gao P, Liu Y-F et al (2020) Predicting thermophilic proteins by machine learning. Curr Bioinform 15:493–502. https://doi.org/10.2174/1574893615666200207094357

    Article  CAS  Google Scholar 

  11. Zou Q, Xing P, Wei L, Liu B (2019) Gene2vec: gene subsequence embedding for prediction of mammalian N 6 -methyladenosine sites from mRNA. RNA 25:205–218. https://doi.org/10.1261/rna.069112.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eshghi F, Ghahramani Z, Ghoreishi R, Ghahremani S (2021) Improvement of floxuridine anti-cancer adsorption on boron carbonitride nanotubes with iron doping: a theoretical study. Theor Chem Acc 140:119. https://doi.org/10.1007/s00214-021-02823-z

    Article  CAS  Google Scholar 

  13. Klingeler R, Sim RB (2011) Carbon nanotubes for biomedical applications. Springer, Berlin. ISBN: 978-3-642-26709-3

  14. Benito P, Herrero M, Labajos FM et al (2009) Production of carbon nanotubes from methane: use of Co-Zn-Al catalysts prepared by microwave-assisted synthesis. Chem Eng J 149:455–462. https://doi.org/10.1016/j.cej.2009.02.022

    Article  CAS  Google Scholar 

  15. Yu J, Huang K, Yang Q et al (2008) Progress in the research of carbon nanotubes as drug carriers. Yao Xue Xue Bao 43:985–991

    CAS  PubMed  Google Scholar 

  16. Nagai H, Okazaki Y, Chew SH et al (2011) Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci 108:E1330–E1338. https://doi.org/10.1073/pnas.1110013108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guo L, Von Dem Bussche A, Buechner M et al (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4:721–727. https://doi.org/10.1002/smll.200700754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sobh RA, Hanaa El-Sayed Nasr WSM (2019) Formulation and in vitro characterization of anticancer drugs encapsulated chitosan/multi-walled carbon nanotube nanocomposites. J Appl Pharm Sci 9:32–40. https://doi.org/10.7324/JAPS.2019.90805

    Article  CAS  Google Scholar 

  19. Zhu W, Huang H, Dong Y et al (2019) Multi-walled carbon nanotube-based systems for improving the controlled release of insoluble drug dipyridamole. Exp Ther Med 17:4610–4616. https://doi.org/10.3892/etm.2019.7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fitton A, Wiseman L (1996) Pantoprazole Drugs 51:460–482. https://doi.org/10.2165/00003495-199651030-00012

    Article  CAS  PubMed  Google Scholar 

  21. Cheer SM, Prakash A, Faulds D, Lamb HM (2003) Pantoprazole Drugs 63:101–133. https://doi.org/10.2165/00003495-200363010-00006

    Article  CAS  PubMed  Google Scholar 

  22. Ortiz de García S, Pinto Pinto G, García Encina P, Irusta Mata R (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465. https://doi.org/10.1016/j.scitotenv.2012.11.057

    Article  CAS  PubMed  Google Scholar 

  23. Huber R, Hartmann M, Bliesath H et al (1996) Pharmacokinetics of pantoprazole in man. Int J Clin Pharmacol Ther 34:185–194

    CAS  PubMed  Google Scholar 

  24. Moreira Dias L (2009) Pantoprazole. Clin Drug Investig 29:3–12. https://doi.org/10.2165/1153121-S0-000000000-00000

    Article  PubMed  Google Scholar 

  25. Krag M, Marker S, Perner A et al (2018) Pantoprazole in patients at risk for gastrointestinal bleeding in the ICU. N Engl J Med 379:2199–2208. https://doi.org/10.1056/NEJMoa1714919

    Article  CAS  PubMed  Google Scholar 

  26. Jungnickel PW (2000) Pantoprazole: a new proton pump inhibitor. Clin Ther 22:1268–1293. https://doi.org/10.1016/S0149-2918(00)83025-8

    Article  CAS  PubMed  Google Scholar 

  27. Miner P (2003) Gastric acid control with esomeprazole, lansoprazole, omeprazole, pantoprazole, and rabeprazole: a five-way crossover study. Am J Gastroenterol 98:2616–2620. https://doi.org/10.1016/j.amjgastroenterol.2003.09.053

    Article  CAS  PubMed  Google Scholar 

  28. Moayyedi P, Eikelboom JW, Bosch J et al (2019) Pantoprazole to prevent gastroduodenal events in patients receiving rivaroxaban and/or aspirin in a randomized, double-blind, placebo-controlled trial. Gastroenterology 157:403-412.e5. https://doi.org/10.1053/j.gastro.2019.04.041

    Article  CAS  PubMed  Google Scholar 

  29. Koh JS, Joo MK, Park J-J et al (2018) Inhibition of STAT3 in gastric cancer: role of pantoprazole as SHP-1 inducer. Cell Biosci 8:50. https://doi.org/10.1186/s13578-018-0248-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dağlı Ü, Kalkan İH (2017) Treatment of reflux disease during pregnancy and lactation. Turkish J Gastroenterol 28:S53–S56. https://doi.org/10.5152/tjg.2017.14

    Article  Google Scholar 

  31. Gravell A, Fones GR, Greenwood R, Mills GA (2020) Detection of pharmaceuticals in wastewater effluents—a comparison of the performance of Chemcatcher® and polar organic compound integrative sampler. Environ Sci Pollut Res 27:27995–28005. https://doi.org/10.1007/s11356-020-09077-5

    Article  CAS  Google Scholar 

  32. Chen Y, Wu S, Yang Q (2020) Development and validation of LC-MS/MS for analyzing potential genotoxic impurities in pantoprazole starting materials. J Anal Methods Chem 2020. https://doi.org/10.1155/2020/6597363

  33. Jadon N, Sharma HK (2020) PANI/chitosan/ionic liquid/GCE sensor for the selective quantification of domperidone (DMP) and pantoprazole (PTZ). Anal Chem Lett 10:537–549. https://doi.org/10.1080/22297928.2020.1837668

    Article  CAS  Google Scholar 

  34. Manjunatha P, Arthoba Nayaka Y, Purushothama HT et al (2019) Single-walled carbon nanotubes-based electrochemical sensor for the electrochemical investigation of pantoprazole in pharmaceuticals and biological samples. Ionics (Kiel) 25:2297–2309. https://doi.org/10.1007/s11581-018-2624-1

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian, Inc (2009) Gaussian 09 revision A. 1. Gaussian, Inc,. Wallingford, CT, USA

  36. Pakiari AH, Eshghi F (2017) Geometric and electronic structures of vanadium sub-nano clusters, Vn(n = 2–5), and their adsorption complexes with CO and O2 ligands: a DFT-NBO study. Phys Chem Res 5. https://doi.org/10.22036/pcr.2017.80624.1364

  37. RG. Parr WY, (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  38. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  39. Reed AE, Weinstock RB, Weinhold F (1985) NBO, Version 3.1.(b). J Chem Phys 83

  40. Duarte AS, Rehbinder J, Correia RRB et al (2013) Mapping impurity of single-walled carbon nanotubes in bulk samples with multiplex coherent anti-stokes Raman microscopy. Nano Lett 13:697–702. https://doi.org/10.1021/nl304371x

    Article  CAS  PubMed  Google Scholar 

  41. Aharoni C, Ungarish M (1977) Kinetics of activated chemisorption. Part 2.—Theoretical models. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 73:456. https://doi.org/10.1039/f19777300456

  42. Freundlich H (1906) Über die Adsorption in Lösungen. Habilitationsschrift durch welche... zu haltenden Probevorlesung" Kapillarchemie und Physiologie" einladet Dr. Herbert Freundlich. W. Engelmann

  43. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II Liquids J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  44. Temkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim URSS 12:327–356

    CAS  Google Scholar 

  45. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  46. Gehlot G, Verma S, Sharma S, Mehta N (2015) Adsorption isotherm studies in the removal of malachite green dye from aqueous solution by using coal fly ash. Int J Chem Stud 3:42–44

    Google Scholar 

  47. Senturk HB, Ozdes D, Gundogdu A et al (2009) Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. J Hazard Mater 172:353–362

    Article  CAS  Google Scholar 

  48. Chen Z, Fu J, Wang M et al (2014) Adsorption of cationic dye (methylene blue) from aqueous solution using poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanospheres. Appl Surf Sci 289:495–501. https://doi.org/10.1016/j.apsusc.2013.11.022

    Article  CAS  Google Scholar 

  49. Lagergren S, Lagergren S, Lagergren SY, Sven K (1898) Zurtheorie der sogenannten adsorption gelösterstoffe

  50. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

Download references

Acknowledgements

The authors gratefully thank Dr. Fazlolah Eshghi for his suggestions and help in this study.

Author information

Authors and Affiliations

Authors

Contributions

Mehdi Vadi conceived of the presented idea. Neda Sadeghpour carried out computational jobs and experiments. Neda Sadeghpour and Narges Bagheri wrote the manuscript and discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Mahdi Vadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1029 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghpour, N., Vadi, M. & Bagheri, N. Engineering delivery of pantaprazole drug using multi-walled carbon nanotubes: an experimental and theoretical study. Struct Chem 33, 733–742 (2022). https://doi.org/10.1007/s11224-022-01883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01883-6

Keywords

Navigation