Skip to main content
Log in

L-Shaped Schottky Barrier MOSFET for High Performance Analog and RF Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work presents the design and simulation of a novel double-gate L-shaped Schottky barrier MOSFET (DG-LS-SB-MOSFET). The device uses a low work function metal near source-channel junction and ErSi1.4 at source and drain regions. Simulated results show that DG-LS-SB-MOSFET has successfully improved the SCE parameters and exhibits high on-current (241 µA/µm) and 2.2 × 103 times higher ION/IOFF as that of conventional device (DG-SB-MOSFET). Due to the use of HfO2 as gate oxide, there is a change of 37.5% in sub-threshold swing (SS). DG-LS-SB-MOSFET also shows similar improvements in RF/analog parameters such as output conductance (gd), transconductance generation factor (gm/ID), Early voltage (VEA), intrinsic gain, cut-off frequency (fT), Gain Frequency Product (GFP) and Gain Transconductance Frequency Product (GTFP). Using 2D calibrated simulation, we validated the transfer characteristics of SB-FET. Furthermore, DG-LS-SB-MOSFET based inverter shows a reduction in ON delay of 95.31% and 46.72% in OFF delay in the as compared to the conventional device-based inverter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Skotnicki T, Hutchby JA, King TJ, Wong H-SP, Boeuf F (2005) The end of CMOS scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance. IEEE Circuits Devices Mag 21(1):16–26

    Article  Google Scholar 

  2. Shah KA, Khanday FA (2020) Nanoscale Electronic Devices and Their Applications. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Chaudhry A, Kumar MJ (2004) Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: A review. IEEE Trans Device Mater Rel 4(1):99–109

    Article  Google Scholar 

  4. Wang C, Snyder JP, Tucker JR (1998) Sub-50-nm PtSi Schottky source/drain p-MOSFETs. In: Proc. 56th Annu. Device Res. Conf. Dig., pp. 72–73

  5. Itoh A, Saitoh M, Asada M (2000) Very short channel metal-gate Schottky source/drain SOI-PMOSFETs and their short channel effect. In: Proc. 58th Annu. Device Res. Conf. Dig., pp. 77–78

  6. Ostling M, Luo J, Gudmundsson V, Hellström PE, Malm BG (2010) Nanoscaling of MOSFETs and the implementation of Schottky barrier S/D contacts. Proc. 27th Int. Conf. Microelectron, pp 9–13

  7. Larrieu G, Yarekha DA, Dubois E, Breil N, Faynot O (2009) Arsenic-segregated rare-earth silicide junctions: Reduction of Schottky barrier and integration in metallic n-MOSFETs on SOI. IEEE Electron Device Lett 30(12):1266–1268

    Article  CAS  Google Scholar 

  8. Vega R, Liu TJK (2010) Dopant-segregated Schottky junction tuning with fluorine pre-silicidation ion implant. IEEE Trans Electron Devices 57(5):1084–1092

    Article  Google Scholar 

  9. Snyder JP (1996) The physics and technology of platinum silicide source and drain field effect transistors. Ph.D. dissertation, Dept. Elect. Electron., Stanford Univ., Stanford, CA, USA

  10. Larrieu G, Dubois E (2004) Schottky-barrier source/drain MOSFETs on ultrathin SOI body with a tungsten metallic midgap gate. IEEE Electron Device Lett 25(12):801–803

    Article  CAS  Google Scholar 

  11. Patil GC, Qureshi S (2011) A novel δ-doped partially insulated dopant segregated Schottky barrier SOI MOSFET for analog/RF applications. Semicond Sci Technol 26(8):085002

    Article  Google Scholar 

  12. Larrieu G, Dubois E (2011) CMOS inverter based on Schottky source–drain MOS technology with low-temperature dopant segregation. IEEE Electron Device Lett 32(6):728–730

    Article  CAS  Google Scholar 

  13. Bashir F, Loan SA, Rafat M, Alamoud ARM, Abbasi SA (2015) A high-performance source engineered charge plasma-based Schottky MOSFET on SOI. IEEE Trans Electron Devices 62(10):3357–3364

    Article  CAS  Google Scholar 

  14. Bashir F, Alharbi AG, Loan SA (2017) Electrostatically Doped DSL Schottky Barrier MOSFET on SOI for Low Power Applications. IEEE J Electron Devices Soc 6:19–25

    Article  CAS  Google Scholar 

  15. Hirpara Y, Saha R (2020) Analysis on DC and RF/analog performance in multifin-FinFET for wide variation in work function of metal gate. SILICON 13(1):73–77

    Article  Google Scholar 

  16. Kaushal S, Rana AK (2021) Negative Capacitance Junctionless FinFET for Low Power Applications: An Innovative Approach. Silicon, pp.1–10

  17. Kaushal S, Rana AK (2022) Analytical model of subthreshold drain current for nanoscale negative capacitance junctionless FinFET. Microelectron J 121:105382

    Article  CAS  Google Scholar 

  18. Kaushal S, Rana AK (2021) Analytical modelling and simulation of negative capacitance junctionless FinFET considering fringing field effects”. Superlattices Microstruct 155:106929

    Article  CAS  Google Scholar 

  19. Roy A, Mitra R, Mondal A, Kundu A (2021) Analog/RF and Power Performance Analysis of an Underlap DG AlGaN/GaN Based High-K Dielectric MOS-HEMT. SILICON 14:221–228

    Google Scholar 

  20. Kaushal S, Rana AK, Sharma R (2021) Performance Evaluation of Negative Capacitance Junctionless FinFET under Extreme Length Scaling. SILICON 13(10):3681–3690

    Article  CAS  Google Scholar 

  21. Lepselter MP, Sze SM (1968) SB-IGFET: an insulated-gate field effect transistor using Schottky barrier contacts for source and drain. Proc IEEE 56(8):1400–1402

    Article  Google Scholar 

  22. Calvet LE, Luebben H, Reed MA, Wang C, Synder JP, Tucker JR (2000) Subthreshold and scaling of PtSi Schottky barrier MOSFETs. Superlattices Microstruct 28(5–6):501–506

    Article  CAS  Google Scholar 

  23. Tucker JR (1997) Schottky barrier MOSFETs for silicon nanoelectronics. In: Proc. IEEE Workshop Frontier Electron, pp. 97–100

  24. Knoch J, Zhang M, Mantl S, Appenzeller J (2006) On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs. IEEE Trans Electron Devices 53(7):1669–1673

    Article  CAS  Google Scholar 

  25. Zhang M, Knoch J, Appenzeller J, Mantl S (2007) Improved carrier injection in ultrathin-body SOI Schottky-barrier MOSFETs. IEEE Electron Device Lett 28(3):223–225

    Article  Google Scholar 

  26. Zhu S, Yu HY, Chen JD, Whang SJ, Chen JH, Shen C, Zhu C, Lee SJ, Li MF, Chan DSH, Yoo WJ (2004) Low temperature MOSFET technology with Schottky barrier source/drain, high-K gate dielectric and metal gate electrode. Solid-State Electron 48(10–11):1987–1992

    Article  CAS  Google Scholar 

  27. Atlas (2017) TCAD device simulator, Silvaco TCAD software

  28. Guilmain M, Jaouad A, Ecoffey S, Drouin D (2011) SiO2 shallow nanostructures ICP etching using ZEP electroresist. Microelectron Eng 88(8):2505–2508

    Article  CAS  Google Scholar 

  29. Jang M, Kim Y, Shin J, Lee S (2004) A 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistor. Appl Phys Lett 84(5):741–743

    Article  CAS  Google Scholar 

  30. Kedzierski J, Xuan P, Erik EK, Anderson H, Bokor J, King T-J, Hu C (2000) Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime. IEDM. Tech Dig 57–60

  31. Zhang X-Y, Hsu C-H, Lien S-Y, Chen S-Y, Huang W, Yang C-H, Kung C-Y, Zhu W-Z, Xiong F-B, Meng X-G (2017) Surface passivation of silicon using HfO2 thin films deposited by remote plasma atomic layer deposition system. Nanosc Res Lett 12(1):1–7

    Google Scholar 

  32. Alfaraj N, Rasheedi NA Fabrication Simulation of a Flexible Metal─Oxide─Semiconductor Field-Effect Transistor. https://doi.org/10.13140/RG.2.2.32243.12324/1

  33. Jhaveri R, Nagavarapu V, Woo JCS (2009) Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans Electron Devices 56(1):93–99

    Article  CAS  Google Scholar 

  34. Fritze M, Chen CL, Calawa S, Yost D, Wheeler B, Wyatt P, Larson J (2004) High-speed Schottky-barrier pMOSFET with f/sub T/= 280 GHz. IEEE Electron Device Lett 25(4):220–222

    Article  Google Scholar 

  35. Chin YK, Pey KL, Singh N, Lo GQ, Tan KH, Ong CY, Tan LH (2009) Dopant-segregated Schottky silicon-nanowire MOSFETs with gate-all-around channels. IEEE Electron Device Lett 30(8):843–845

    Article  CAS  Google Scholar 

  36. Tan EJ, Pey KL, Singh N, Lo GQ, Chi DZ, Chin YK, Lee PS (2008) Demonstration of Schottky barrier NMOS transistors with erbium silicided source/drain and silicon nanowire channel. IEEE Electron Device Lett 29(10):1167–1170

    Article  CAS  Google Scholar 

  37. Kumar P, Bhowmick B (2020) Source-Drain Junction Engineering Schottky Barrier MOSFETs and their Mixed Mode Application. SILICON 12(4):821–830

    Article  CAS  Google Scholar 

  38. Kumar P, Bhowmick B (2018) Scaling of dopant segregation Schottky barrier using metal strip buried oxide MOSFET and its comparison with conventional device. SILICON 10(3):811–820

    Article  CAS  Google Scholar 

  39. Rashid S, Bashir F, Khanday FA, Beigh MR, Hussin FA (2021) 2-D Design of Double Gate Schottky Tunnel MOSFET for High-Performance Use in Analog/RF Applications. IEEE Access 9:80158–80169

    Article  Google Scholar 

Download references

Acknowledgements

The research work is supported by University Grants Commission, Government of India in the form of Junior Research Fellowship (190510736394).

Author information

Authors and Affiliations

Authors

Contributions

Ms. Shazia Rashid-Conceptualization, Methodology, Software, Investigation, Writing -original draft preparation, Editing, Reviewing; Dr. Faisal Bashir-Data curation, Visualization, Investigation, Software, Editing, Revision; Dr. Farooq A. Khanday-Supervision, Reviewing, Revision and Editing; Dr. M. Rafiq Beigh- Reviewing and Editing.

Corresponding author

Correspondence to Farooq A. Khanday.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Yes.

Competing Interests

Not applicable.

Disclosure of Potential Conflicts of Interest

There is no conflict of interest among the authors while submitting the manuscript.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

All authors have been informed before submitting the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, S., Bashir, F., Khanday, F.A. et al. L-Shaped Schottky Barrier MOSFET for High Performance Analog and RF Applications. Silicon 15, 205–215 (2023). https://doi.org/10.1007/s12633-022-02006-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02006-w

Keywords

Navigation