Skip to main content

Advertisement

Log in

Studying the Role of Gelation Agents in Gelcasting Non-porous Si3N4 Bodies by Pressureless Sintering

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The monomer content in the gelcasting process affects the kinetics of cross-linking reactions which determines the quality of the gel network structure and the final properties of the material. The main purpose of this study was to optimize the monomer contents in the gelcasting process to achieve a dense Si3N4 body by using pressureless sintering. Si3N4 bodies with a relative density of 95.9 ± 0.5% and 605 ± 4 MPa flexural strength were successfully prepared by employing the gelcasting technique using high-solid load slurry of 76 wt%. Acrylamide (AM) and N, N′-methylenebisarylamide (MBAM) were adopted as the monomeric system. The quality of gel structures was characterized by measuring idle time, green flexural strength, and linear shrinkage. Phase composition and microstructure of sintered samples were identified using XRD and SEM analysis, respectively. The linear drying shrinkage and Idle time decreased by increasing the monomer content. However, flexural green strength did not monotonically change with monomer content. The slurry with a 6 wt% monomer and AM/MBAM ratio of 3 produced the optimized gel structure. Besides, it resulted in a higher amount of β-Si3N4 phase which gives better mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Riley FL (2000) Silicon nitride and related materials. J Am Ceram Soc 83(2):245–265

    Article  CAS  Google Scholar 

  2. Petzow G, Herrmann M (2002) Silicon Nitride Ceramics. In: Jansen M (ed) High Performance Non-Oxide Ceramics II. Springer, Berlin, pp 47–167

    Chapter  Google Scholar 

  3. Cao L, Wang Z, Yin Z, Liu K, Yuan J (2018) Investigation on mechanical properties and microstructure of silicon nitride ceramics fabricated by spark plasma sintering. Mater Sci Eng A 731:595–602

    Article  CAS  Google Scholar 

  4. Li Y, Chen F, Li L, Zhang W, Yu H, Shan Y, Shen Q, Jiang H (2010) Gas pressure sintering of arbitrary porous silicon nitride ceramics with high mechanical strength. J Am Ceram Soc 93(6):1565–1568

    CAS  Google Scholar 

  5. Li JL, Chen F, Niu JY (2011) Low temperature sintering of Si3N4 ceramics by spark plasma sintering technique. Adv Appl Ceram 110(1):20–24

    Article  CAS  Google Scholar 

  6. Bocanegra-Bernal MH, Matovic B (2010) Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures. Mater Sci Eng A 527(6):1314–1338

    Article  Google Scholar 

  7. Klemm H (2010) Silicon nitride for high-temperature applications. J Am Ceram Soc 93(6):1501–1522

    Article  CAS  Google Scholar 

  8. Pollinger JP (ed.) (1995) Improved Silicon Nitride Materials and Component Fabrication Processes for Aerospace and Industrial Gas Turbine Applications. ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition; V005T13A004

  9. Okada A (2009) Ceramic technologies for automotive industry: Current status and perspectives. Mater Sci Eng B 161(1):182–187

    Article  CAS  Google Scholar 

  10. Drouet C, Leriche A, Hampshire S, Kashani M, Stamboulis A, Iafisco M et al (2017) 2 - Types of ceramics: Material class. In: Palmero P, Cambier F, De Barra E (eds) Advances in Ceramic Biomaterials. Woodhead Publishing, pp 21–82

    Chapter  Google Scholar 

  11. Mazzocchi M, Bellosi A (2008) On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties. Cytotoxicity 19(8):2881–2887

    CAS  Google Scholar 

  12. Li J-Q, Luo F, Zhu D-M, Zhou W-C (2006) Preparation and dielectric properties of porous silicon nitride ceramics. Trans Nonferrous Metals Soc China 16:s487–s4s9

    Article  Google Scholar 

  13. Omatete OO (1991) Gelcasting-a new ceramic forming process. Am Ceram Soc Bull 70:1641

    CAS  Google Scholar 

  14. Bocanegra-Bernal MH, Matovic B (2009) Dense and near-net-shape fabrication of Si3N4 ceramics. Mater Sci Eng A 500(1):130–149

    Article  Google Scholar 

  15. Yin S, Jiang S, Pan L, Guo L, Zhang Z, Zhang J et al (2019) Effects of solid loading and calcination temperature on microstructure and properties of porous Si3N4 ceramics by aqueous gelcasting using DMAA system. Ceram Int 45(16):19925–19933

    Article  CAS  Google Scholar 

  16. Liu P-F, Li Z, Xiao P, Liu Y, Liu Z-Y, Luo H et al (2018) Effect of the molecular weight and concentration of PEG solution on microstructure and mechanical properties of Si3N4 ceramics fabricated by gel-casting. Ceram Int 44(8):8800–8808

    Article  CAS  Google Scholar 

  17. Parsi A, Golestani-Fard F, Mirkazemi SM (2019) The effect of gelcasting parameters on microstructural optimization of porous Si3N4 ceramics. Ceram Int 45(8):9719–9725

    Article  CAS  Google Scholar 

  18. Kastyl J, Chlup Z, Stastny P, Trunec M (2020) Machinability and properties of zirconia ceramics prepared by gelcasting method. Adv Appl Ceram 119(5-6):252–60

  19. Li L, Wang H, Su S (2015) Porous Si3N4 Ceramics Prepared by TBA-based Gel-casting. J Mater Sci Technol 31(3):295–299

    Article  CAS  Google Scholar 

  20. Vandeperre L, De Wilde A, Luyten J (2003) Gelatin gelcasting of ceramic components. J Mater Process Technol 135(2–3):312–316

    Article  CAS  Google Scholar 

  21. Colonetti VC, Sanches MF, de Souza VC, Fernandes CP, Hotza D, Quadri MGN (2018) Cellular ceramics obtained by a combination of direct foaming of soybean oil emulsified alumina suspensions with gel consolidation using gelatin. Ceram Int 44(2):2436–2445

    Article  CAS  Google Scholar 

  22. Adolfsson E (2006) Gelcasting of zirconia using agarose. J Am Ceram Soc 89(6):1897–1902

    Article  CAS  Google Scholar 

  23. Ewais EMM, Ahmed YMZ (2002) Consolidation of silicon carbide in aqueous medium based on gelation of agarose. Br Ceram Trans 101(6):255–258

    Article  CAS  Google Scholar 

  24. Jia Y, Kanno Y, Xie Z-P (2002) New gel-casting process for alumina ceramics based on gelation of alginate. J Eur Ceram Soc 22(12):1911–1916

    Article  CAS  Google Scholar 

  25. Olhero SM, Tari G, Coimbra MA, Ferreira JMF (2000) Synergy of polysaccharide mixtures in gelcasting of alumina. J Eur Ceram Soc 20(4):423–429

    Article  CAS  Google Scholar 

  26. Khanghah NS, Sani MAF (2010) Idle Time and Gelation Behavior in Gelcasting Process of PSZ in Acrylamide System. In: Zuhair A. Munir TO, Yuji Hotta, Mrityunjay Singh, editor. Innovative Processing and Manufacturing of Advanced Ceramics and Composites. 1st Edition ed: Wiley-American Ceramic Society; p. 105-13

  27. Montanaro L, Coppola B, Palmero P, Tulliani J-M (2019) A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics. Ceram Int 45(7 Part B):9653–9673

    Article  CAS  Google Scholar 

  28. Millán AJ, Moreno R, Nieto MAI (2002) Thermogelling polysaccharides for aqueous gelcasting—part I: a comparative study of gelling additives. J Eur Ceram Soc 22(13):2209–2215

    Article  Google Scholar 

  29. Ortega FS, Valenzuela FAO, Scuracchio CH, Pandolfelli VC (2003) Alternative gelling agents for the gelcasting of ceramic foams. J Eur Ceram Soc 23(1):75–80

    Article  CAS  Google Scholar 

  30. Yu J, Wang H, Zeng H, Zhang J (2009) Effect of monomer content on physical properties of silicon nitride ceramic green body prepared by gelcasting. Ceram Int 35(3):1039–1044

    Article  CAS  Google Scholar 

  31. Yu J, Wang H, Zhang J, Zhang D, Yan Y (2010) Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers. J Sol-Gel Sci Technol 53(3):515–523

    Article  CAS  Google Scholar 

  32. Huang Y, Yang J (2010) The Gel-Casting of Non-Oxide Ceramics. In: Huang Y, Yang J (eds) Novel Colloidal Forming of Ceramics. Springer, Berlin, pp 211–282

    Chapter  Google Scholar 

  33. Lin X, Shi J, Gong H, Zhang Y, Feng Y, Guo X et al (2018) Preparation and Properties of Pressureless-Sintered Porous Si3N4 Ceramics. Advanced Functional Materials. Springer, Singapore

    Google Scholar 

  34. Wang H, Yu J, Zhang J, Zhang D (2010) Preparation and properties of pressureless-sintered porous Si3N4. J Mater Sci 45(13):3671–3676

    Article  CAS  Google Scholar 

  35. Kawai C, Yamakawa A (1997) Effect of porosity and microstructure on the strength of Si3N4: designed microstructure for high strength, high thermal shock resistance, and facile machining. J Am Ceram Soc 80(10):2705–2708

    Article  CAS  Google Scholar 

  36. Xuejian L, Liping H, Xin X, Xiren F, Hongchen G (2000) Optimizing the rheological behavior of silicon nitride aqueous suspensions. Ceram Int 26(3):337–340

    Article  Google Scholar 

  37. Gu YP (2015) Encyclopedia of Surface and Colloid Science3rd edn. CRC Press 9781351252386

    Google Scholar 

  38. Zeng W, Gan X, Li Z, Zhou K (2016) The preparation of silicon nitride ceramics by gelcasting and pressureless sintering. Ceram Int 42(10):11593–11597

    Article  CAS  Google Scholar 

  39. Janney M, Nunn S, Walls C, Omatete O, Ogle R, Kirby G et al (1998). Gelcasting:1–15

  40. Yang Z, Yu J, Li C, Zhong Y, Deng K, Ren Z, Wang Q, Dai Y, Wang H (2016) Effect of β-Si3N4 initial powder size on texture development of porous Si3N4 ceramics prepared by gel-casting in a magnetic field. Trans Indian Ceram Soc 75(4):256–262

    Article  CAS  Google Scholar 

  41. Wan T, Yao D, Yin J, Xia Y, Zuo K, Zeng Y (2015) The microstructure and mechanical properties of porous silicon nitride ceramics prepared via novel aqueous Gelcasting. Int J Appl Ceram Technol 12(5):932–938

    Article  CAS  Google Scholar 

  42. Yang X, Li B, Zhang C, Wang S, Liu K, Zou C (2016) Fabrication and properties of porous silicon nitride wave-transparent ceramics via gel-casting and pressureless sintering. Mater Sci Eng A 663:174–180

    Article  CAS  Google Scholar 

  43. Bressiani JC, Izhevskyi V, Bressiani AH (1999) Development of the microstructure of the silicon nitride based ceramics. J Eur Ceram Soc 2(3):165–172

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Alireza Mirhabibi, Aba Raha, and other collaborators at the Synthesis Laboratory of the IUST.

Funding

The authors did not receive any financial support from any agency/organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Omid Sharifi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest related to this study.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, O., Alizadeh, S.M., Golmohammad, M. et al. Studying the Role of Gelation Agents in Gelcasting Non-porous Si3N4 Bodies by Pressureless Sintering. Silicon 14, 10447–10457 (2022). https://doi.org/10.1007/s12633-022-01798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01798-1

Keywords

Navigation