Skip to main content

Advertisement

Log in

Fabrication and Properties of a Gel-Cast Dense Silicon Carbide Body

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research, the effect of different parameters on the behavior of suspension rheology, as well as the physical and mechanical properties of green and sintered SiC bodies, were investigated. Viscosity values ​​for slurries containing 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1 wt% of dispersant (Tetramethyl ammonium hydroxide ((CH3)4NOH, TMAH) were investigated, and the minimum viscosity was obtained for the slurry containing 0.7 wt% TMAH. The results showed that the highest amount of SiC powder that could be used without causing any serious problem was 37 vol.%. The monomers used in the research were metacrylamide (MAM) and N,Ń- methylenbisacrylamide (MBAM). Afterward, the effect of monomers content (MAM and MBAM) and ceramic load on the shrinkage and warpage of green bodies were investigated. The results demonstrated that increasing the amount of monomers decreases warpage rate (WP) and shrinkage rate (SK). Other than that, with increasing monomers ratio, both of these parameters increase uniformly. Subsequently, the samples were sintered for 1 h at 2150 °C. The results proved that the sample containing 37 vol.% of SiC with a monomers ratio of 3:1 and a total monomers content of 20 wt.% had the highest hardness, fracture toughness, and relative density, equal to 27.51 ± 1.25 GPa, 6.2 MPa.m1/2, and 96.89%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ciudad E, Borrero-López O, Rodríguez-Rojas F, Ortiz AL, Guiberteau F (2012) Effect of intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered α-SiC. J Eur Ceram Soc 32:511–516. https://doi.org/10.1016/j.jeurceramsoc.2011.09.011

    Article  CAS  Google Scholar 

  2. Strecker K, Ribeiro S, Camargo D, Silva R, Vieira J, Oliveira F (1999) Liquid phase sintering of silicon carbide with AlN/Y2O3, Al2O3/Y2O3 and SiO2/Y2O3 additions. Mater Res 2:249–254 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14391999000400003&nrm=iso

    Article  CAS  Google Scholar 

  3. Harris GL (1995) Properties of silicon carbide. INSPEC, London

    Google Scholar 

  4. Zum Gahr K-H, Blattner R, Hwang D-H, Pöhlmann K (2001) Micro- and macro-tribological properties of SiC ceramics in sliding contact. Wear. 250:299–310. https://doi.org/10.1016/S0043-1648(01)00595-6

    Article  Google Scholar 

  5. Jana DC, Sundararajan G, Chattopadhyay K (2017) Effect of monomers content in enhancing solid-state densification of silicon carbide ceramics by aqueous gelcasting and pressureless sintering. Ceram Int 43:4852–4857. https://doi.org/10.1016/j.ceramint.2016.12.117

    Article  CAS  Google Scholar 

  6. Kriegesmann J (2014) Processing of silicon carbide-based ceramics, in: Compr. Hard mater, pp 89–175. https://doi.org/10.1016/B978-0-08-096527-7.00023-4

    Book  Google Scholar 

  7. Suyama S, Kameda T, Itoh Y (2003) Development of high-strength reaction-sintered silicon carbide. Diam Relat Mater 12:1201–1204. https://doi.org/10.1016/S0925-9635(03)00066-9

    Article  CAS  Google Scholar 

  8. Omori M, Takei H (n.d.) Pressureless sintering of SiC. J Am Ceram Soc 65:c92–c92. https://doi.org/10.1111/j.1151-2916.1982.tb10460.x

  9. Kim Y-W, Mitomo M, Nishimura T (n.d.) Heat-resistant silicon carbide with aluminum nitride and erbium oxide. J Am Ceram Soc 84:2060–2064. https://doi.org/10.1111/j.1151-2916.2001.tb00958.x

  10. Huang ZH, Jia DC, Zhou Y, Wang YJ (2002) Effect of a new additive on mechanical properties of hot-pressed silicon carbide ceramics. Mater Res Bull 37:933–940. https://doi.org/10.1016/S0025-5408(02)00704-3

    Article  CAS  Google Scholar 

  11. Liang H, Yao X, Zhang J, Liu X, Huang Z (2014) Low temperature pressureless sintering of α-SiC with Al2O3 and CeO2 as additives. J Eur Ceram Soc 34:831–835. https://doi.org/10.1016/j.jeurceramsoc.2013.09.015

    Article  CAS  Google Scholar 

  12. Eom J-H, Seo Y-K, Kim Y-W, Lee S-J (2015) Effect of additive composition on mechanical properties of pressureless sintered silicon carbide ceramics sintered with alumina, aluminum nitride and yttria. Met Mater Int 21:525–530. https://doi.org/10.1007/s12540-015-4383-0

    Article  CAS  Google Scholar 

  13. Zhu X, Tang F, Suzuki TS, Sakka Y (2003) Role of the initial degree of ionization of polyethylenimine in the dispersion of silicon carbide nanoparticles. J Am Ceram Soc 86:189–191. https://doi.org/10.1111/j.1151-2916.2003.tb03302.x

    Article  CAS  Google Scholar 

  14. Omatete OO, Janney MA, Strehlow RA (1991) Gelcasting – a new ceramic forming process. Am Ceram Soc Bull 70:1641–1649

    CAS  Google Scholar 

  15. P.N. P (n.d.) In situ-toughened silicon carbide. J Am Ceram Soc 77:519–523. https://doi.org/10.1111/j.1151-2916.1994.tb07024.x

  16. Niihara K (1991) New design concept of structural ceramics―ceramic nanocomposites. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 99:974–982

    Article  CAS  Google Scholar 

  17. Sakka Y, Bidinger DD, Aksay IA (1995) Processing of silicon carbide-Mullite-alumina Nanocomposites. J Am Ceram Soc 78:479–486. https://doi.org/10.1111/j.1151-2916.1995.tb08827.x

    Article  CAS  Google Scholar 

  18. Young AC, Omatete OO, Janney MA, Menchhofer PA (1991) Gelcasting of alumina. J Am Ceram Soc 74:612–618. https://doi.org/10.1111/j.1151-2916.1991.tb04068.x

    Article  CAS  Google Scholar 

  19. Omatete OO, Janney MA, Nunn SD (1997) Gelcasting: from laboratory development toward industrial production. J Eur Ceram Soc 17:407–413. https://doi.org/10.1016/S0955-2219(96)00147-1

    Article  Google Scholar 

  20. Zhou L, Huang Y, Xie Z (2000) Gelcasting of concentrated aqueous silicon carbide suspension. J Eur Ceram Soc 20:85–90. https://doi.org/10.1016/S0955-2219(99)00138-7

    Article  CAS  Google Scholar 

  21. Zhang J, Jiang D, Lin Q, Chen Z, Huang Z (2015) Properties of silicon carbide ceramics from gelcasting and pressureless sintering. Mater Des 65:12–16. https://doi.org/10.1016/j.matdes.2014.08.034

    Article  CAS  Google Scholar 

  22. Struble L, Sun G-K (1995) Viscosity of Portland cement paste as a function of concentration. Adv Cem Based Mater 2:62–69. https://doi.org/10.1016/1065-7355(95)90026-8

    Article  CAS  Google Scholar 

  23. Yu J, Wang H, Zhang J, Zhang D, Yan Y (2010) Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers. J Sol-Gel Sci Technol 53:515–523. https://doi.org/10.1007/s10971-009-2125-9

    Article  CAS  Google Scholar 

  24. Kheyrinia L, Baharvandi HR, Ehsani N, Yaghobizadeh O (2019) Fabrication of SiC bodies by optimized gel-casting method. Int J Refract Met Hard Mater 81:225–232. https://doi.org/10.1016/j.ijrmhm.2019.02.012

    Article  CAS  Google Scholar 

  25. Yaghobizadeh O, Baharvandi H, Alizadeh A (2014) Investigation of effect of acrylate gel maker parameters on properties of WC preforms for the production of W-ZrC composite. Int J Refract Met Hard Mater 45:130–136. https://doi.org/10.1016/j.ijrmhm.2014.04.007

    Article  CAS  Google Scholar 

  26. Wachtman JB, Cannon WR, Matthewson MJ (2009) W.I. (online service), mechanical properties of ceramics https://app.knovel.com/hotlink/toc/id:kpMPCE0001/mechanical-properties/mechanical-properties

    Book  Google Scholar 

  27. Bertholet J-M (1999) Composite materials : mechanical behavior and structural analysis. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Laleh Kheyrinia.

Ethics declarations

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

We have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheyrinia, L., Baharvandi, H.R., Ehsani, N. et al. Fabrication and Properties of a Gel-Cast Dense Silicon Carbide Body. Silicon 14, 2521–2532 (2022). https://doi.org/10.1007/s12633-021-01022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01022-6

Keywords

Navigation