Skip to main content
Log in

All-Optical Parallel Programmable Logic Element Based on Binary Decision Diagram Mapping in Micro-Ring Resonators

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An all-optical parallel programmable logic element (PPLE) has been proposed using three silicon micro-ring resonators (MRRs) in this paper. The circuit has three inputs and three outputs. Also three control inputs are used to change the output. Three outputs of the circuit exhibit one/two/three-variable binary logic functions. The device operates in μs range. Numerical simulation has been done to clarify the circuit performance. Extinction ratio and contrast ratio are found ~13 dB and 17 dB respectively. To find out the logical expressions at the output ports binary decision diagram (BDD) mapping is used. Comparisons with the existing MRR based logic circuits have also been done. The cascading mechanism is also shown to construct multivariable logical operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Li G, Qian F, Ruan H, Liu L (1999) Compact parallel optical modified-signed-digit arithmetic-logic Array processor with Electron-trapping device. Appl Opt 38(23):5039–5045

    Article  CAS  PubMed  Google Scholar 

  2. Singh S, Singh D, Lovkesh (2020) Optical combinational circuit for contention detection circuit in all optical router. Optik Int J Light Electron Opt 218:165251

    Article  Google Scholar 

  3. Kim J-Y, Kang J-M, Kim T-Y, Han S-K (2006) All-optical multiple logic gates with XOR, NOR, OR and NAND functions using parallel SOA-MZI structures: Theory and experiment. J Lightwave Technol 24(9):3392–3399

    Article  Google Scholar 

  4. Abdulnabi SH, Abbas MN (2019) Design an all-optical combinational logic circuits based on nano-ring insulator metal insulator plasmonic waveguides. Photonics 6:30

    Article  CAS  Google Scholar 

  5. Hiluf D (2018) All optical programmable logic array (PLA). J Phys Conf Ser ANNIC 987:012033

    Article  Google Scholar 

  6. Han B, Liu Y (2019) All optical reconfigurable non-inverted logic gates with a single semiconductor optical amplifier. AIP Adv 9:015007

    Article  Google Scholar 

  7. Fouskidis DE, Zoiros KE, Hatziefremidis A (2021) Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J Sel Top Quant Electron 27(2):7600915–7600915

    Article  CAS  Google Scholar 

  8. Mahboob I, Flurin E, Nishiguchi K, Fujiwara A, Yamaguchi H (2011) Interconnect-free parallel logic circuits in a single mechanical resonator. Nat Commun 2:198

    Article  CAS  PubMed  Google Scholar 

  9. Bogaerts W, Pérez D, Capmany J, Miller DAB, Poon J, Englund D, Morichetti F, Melloni A (2020) Programmable photonic circuits. Nature 586:207–216

    Article  CAS  PubMed  Google Scholar 

  10. Lee E-H, Kim KH, Lee HK (2002) Nonlinear effects in optical fiber: advantages for high capacity all-optical communication application. Opt Quant Electron 34:1167–1174

    Article  CAS  Google Scholar 

  11. Singh P, Tripathi DK, Jaiswal S, Dixit HK (2014) All-optical logic gates: designs, classification, and comparison. Adv Opt tech 275083:1–13

    Google Scholar 

  12. Brunetti G, Olio FD, Conteduca D, Armenise MN, Ciminelli C (2020) Comprehensive mathematical modelling of ultra-high q grating-assisted ring resonators. J Opt 22(3):035802

    Article  CAS  Google Scholar 

  13. Pan S, Tang Z, Huang M, Li S (2020) Reflective-type microring resonator for on-Chip reconfigurable microwave photonic systems. IEEE J Sel Top Quant Electron 26(5):7701712–7701712

    Article  CAS  Google Scholar 

  14. Law FK, Uddin MR, Chen Chen AT, Nakarmi B (2020) Positive edge-triggered JK flip-flop using silicon-based micro-ring resonator. Opt Quant Electron 52(314):1–12

    Google Scholar 

  15. Rakshit JK, Roy JN (2014) Micro-ring resonator based all-optical reconfigurable logic operation. Opt Commun 321:38–46

    Article  CAS  Google Scholar 

  16. Xu Q, Soref R (2011) Reconfigurable optical directed logic circuits using micro resonator based optical switches. Opt Express 19(6):5244–5259

    Article  PubMed  Google Scholar 

  17. Tian Y, Zhao G, Liu Z, Guo A, Xiao H, Wu X, Meng Y, Deng L, Guo X, Liu G, Yang J (2016) Reconfigurable electro-optic logic circuits using microring resonator-based optical switch Array. IEEE Photon J 8(2):7801908–7801908

    Article  Google Scholar 

  18. Law FK, Uddin MR (2020) Digital electro-optic exclusive OR and NOR gates utilizing a single micro-ring resonator. Optik – Int J Light Electron Opt 200:163361

    Article  CAS  Google Scholar 

  19. Moroney N, Bino LD, Woodley MTM, Ghalanos GN, Silver JM, Svela AO, Zhang S, Haye PD (2020) Logic gates based on interaction of counterpropagating light in microresonators. IEEE J Light Wave Technol 38(6):1414–1419

    Article  CAS  Google Scholar 

  20. Ying Z, Zhao Z, Feng C, Mital R, Dhar S, Pan DZ, Soref R, Chen RT (2018) Automated logic synthesis for electro-optic logic-based integrated optical computing. Opt Express 26(21):28002–28012

    Article  PubMed  Google Scholar 

  21. Tian Y, Li D, Liu Z, Xia H, Zhao G, Yang J, Zhao Y, Han G, Gao X (2016) Simulation and demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. IEEE Photon J 8(2):7802211–7802211

    Article  Google Scholar 

  22. Bharti GK, Biswas U, Rakshit JK (2019) Design of micro ring resonator based all optical universal reconfigurable logic circuit. Optoelectron Adv Mater-Rapid Commun 13(7–8):407–414

    CAS  Google Scholar 

  23. Bharti GK, Rakshit JK, Sing MP, Yupapin P (2019) Design of all-optical universal logic gates using mode-conversion in single silicon microring resonator. J Nanophoton 13(3):036002

    Article  CAS  Google Scholar 

  24. Bharti GK, Sing MP, Rakshit JK (2020) Design and modelling of polarization conversion based all-optical basic logic gates in a single silicon ring resonator. Silicon 12:1279–1288

    Article  CAS  Google Scholar 

  25. Bharti GK, Rakshit JK (2021) Design of all-optical logical mode-switching using micro-ring resonator. Opt Eng 60(3):035103

    Article  CAS  Google Scholar 

  26. Yang L, Zhang L, Tian Y (2013) Electro-optic logic circuits based on silicon microring switches. Proc. of SPIE, vol. 8855, 88550E-1, ed. By KM Iftekharuddin, AAS Awwal, A Marquez. https://doi.org/10.1117/12.2026919

  27. Kizhakkakath F, Ravindran S, Park K, Alameh K, Lee YT (2021) Realization and optimization of optical logic gates using bias assisted carrier injected triple parallel microring resonators. Results Opt 4:100090

    Article  Google Scholar 

  28. Almeida VR, Barrios CA, Panepucci RR, Lipson M, Foster MA, Ouzounov DG, Gaeta AL (2004) All-optical switching on silicon chip. Opt Lett 29(24):2867–2869

    Article  PubMed  Google Scholar 

  29. Su SP, Wu CL, Lin YH, Lin GR (2016) All-optical modulation in Si quantum dot-doped SiOx Micro-ring waveguide resonator. IEEE J Sel Top Quant Electron 22(2):40–48. https://doi.org/10.1109/JSTQE.2015.2440912

    Article  CAS  Google Scholar 

  30. Dekker R, Driessen A, Wahlbrink T, Moormann C, Niehusmann J, Först M (2006) Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses. Opt Express 14(18):8336–8346

    Article  CAS  PubMed  Google Scholar 

  31. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All-optical control of light on a silicon chip. Nature 431:1081–1084

    Article  CAS  PubMed  Google Scholar 

  32. Xu Q, Lipson M (2006) Carrier-induced optical bistability in silicon ring resonators. Opt Lett 31(3):341–343

    Article  CAS  PubMed  Google Scholar 

  33. Liu F, Li Q, Zhang Z, Qiu M, Su Y (2008) Opically tunable delay line un silicon microring resonator based thermal nonlinear effect. IEEE Sel Topi Quant Electron 14(3):706–712

    Article  CAS  Google Scholar 

  34. Borghi M, Bazzanella D, Mancinelli M, Pavesi L (2021) On the modelling of thermal and free carrier nonlinearities in silicon-on-insulator microring resonators. Opt Express 29(3):4363–4377

    Article  CAS  PubMed  Google Scholar 

  35. Wei K, Li D, Lin Z, Cheng Z, Yao Y, Guo J, Wang Y, Zhang Y, Dong J, Zhang H, Zhan X (2020) All-optical PtSe2 silicon photonic modulator with ultra-high stability. Photon Res 8(7):1189–1196

    Article  CAS  Google Scholar 

  36. Guha B, Cardenas J, Lipson M (2013) Athermal silicon microring resonators with titanium oxide cladding. Opt Express 21(22):26551–26563

    Article  Google Scholar 

  37. Dekker R, Useckak N, Forst M, Driessen A (2007) Ultrafast nonlinear all-optical process in silicon-on-insulator waveguides. J Phy D Appl Phys 40:R249–R271

    Article  CAS  Google Scholar 

  38. Wu C-L, Su S-P, Lin G-R (2014) All-optical modulation based on silicon quantum dot doped SiOx:Si-QD waveguide. Laser Photonics Rev:1–11. https://doi.org/10.1002/lpor.201400024

  39. Yariv A (2000) Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett 36(4):321–322

    Article  CAS  Google Scholar 

  40. Dasic M (2013) Comparison of transfer matrix (T-matrix) and coupling of modes in time (CMD) models of couples microring resonator filters. Infoteh-Jahorina 12:1233–1238

    Google Scholar 

  41. Rakshit JK, Chattopadhyay T, Roy JN (2013) Design of ring resonator based all optical switch for logic and arithmetic operations – a theoretical study. Optik 124(23):6048–6057

    Article  CAS  Google Scholar 

  42. Kumar A, Kumar M, Jindal SK, Raghuwanshi S, Choudhary R (2021) Implementation of all-optical 1 × 4 memory register unit using the micro-ring resonator structures. Opt Quant Electron 53:492. https://doi.org/10.1007/s11082-021-03131-3

    Article  Google Scholar 

  43. Wu C-L, Lin Y-H, Su S-P, Huang B-J, Tsai C-T, Wang H-Y, Chi Y-C, Wu C-I, Lin G-R (2015) Enhancing optical nonlinearity in a nonstoichiometric SiN waveguide for cross-wavelength all-optical data processing. ACS Photon 2(8):1141–1154. https://doi.org/10.1021/acsphotonics.5b00192

    Article  CAS  Google Scholar 

  44. Bharti GK, Rakshit JK (2018) Design of all-optical JK, SR and T flip-flops using micro-ring resonator-based optical switch. Photon Netw Commun 35(3):381–391. https://doi.org/10.1007/s11107-017-0754-4

    Article  Google Scholar 

  45. Deb A, Wille R, Drechsler R (2017) Dedicated synthesis for MZI-based optical circuits based on AND-Inverter graphs. 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), https://doi.org/10.1109/ICCAD.2017.8203783

  46. Thangkhiew PL, Zulehner A, Wille R, Dutta K, Sengupta I (2020) An efficient memristor crossbar architecture for mapping Boolean functions using binary decision diagrams (BDD). Integr VLSI J 71:125–133

    Article  Google Scholar 

  47. Yakar O, Nie Y, Wada K, Agarwal A, Ercan I (2019) Energy Efficiency of Microring Resonator (MRR)-Based Binary Decision Diagram (BDD) Circuits. 2019 IEEE International Conference on Rebooting Computing (ICRC). https://doi.org/10.1109/ICRC.2019.8914708

  48. Matsuo R, Shiomi J, Ishihara T, Onodera H, Shinya A, Notomi M (2019) Methods for reducing power and area of BDD-based optical logic circuits. IEICE Trans Fundam E102-A(12):1751–1759

    Article  Google Scholar 

  49. Bandyopadhyay C, Das R, Wille R, Drehsler R, Rahaman H (2018) Synthesis of circuits based on all-optical Mach-Zehnder interferometers using binary decision diagrams. Microelectron J 71:19–29

    Article  CAS  Google Scholar 

  50. Chen Y, Blair S (2003) Nonlinear phase shift of cascaded microring resonators. J Opt Soc Am B 20(10):2125–2132

    Article  CAS  Google Scholar 

  51. Zhang Y, Wang K, Liu X, Zhang X (2013) An add-drop ring resonator interferometer sensor with high sensitivity. 2013 Seventh International Conference on Sensing Technology (ICST), pp. 316–319. https://doi.org/10.1109/ICSensT.2013.6727666

  52. Dutta AK, Dutta NK, Fujiwara M WDM technologies: passive optical components, vol 2. Academic Press ISBN: 0–12–225262-4, 2003 by Elsevier Science (USA)

  53. Siarkos T, Zoiros KE, Nastou D (2009) On the feasibility of full pattern-operated all-optical XOR gate with single semiconductor optical amplifier-based ultrafast nonlinear interferometer. Opt Commun 282:2729–2740

    Article  CAS  Google Scholar 

  54. Lipson M (2005) Guiding, modulating, and emitting light on silicon – challenges and opportunities. J Light Wave Technol 21(12):4222–4238

    Article  Google Scholar 

Download references

Code Availability

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

TC - Conceptualization, Methodology, implementation, simulation and writing original draft preparation.

Corresponding author

Correspondence to Tanay Chattopadhyay.

Ethics declarations

Conflict of Interest

The author has declared no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Author has agreed and given his consent to participate in this research work.

Consent for Publication

Author has agreed and given his consent for the publication of this research paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, T. All-Optical Parallel Programmable Logic Element Based on Binary Decision Diagram Mapping in Micro-Ring Resonators. Silicon 14, 10695–10718 (2022). https://doi.org/10.1007/s12633-022-01797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01797-2

Keywords

Navigation