Skip to main content
Log in

Dielectric Response and Capacitance Measurements of Ag/ PVAc-Si /p-Si Structure

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, the effect of Poly(vinyl acetate) latex with Silicone surfactant (shortly PVAc-Si) thin film on the dielectric and capacitance-voltage properties of Ag / PVAc-Si /p-Si (MIS) structure were investigated. The dielectric characterization was obtained by impedance spectroscopy technique between 40 Hz-110 MHz at room temperature. The capacitance-voltage measurements were performed to clarify the flat band voltage of the sample. The frequency dependence of the real and imaginary parts of the complex impedance function indicated a space charge polarization. The Nyquist plots confirmed a single Debye type relaxation. The real and imaginary components of the complex dielectric function implied the effect of the grain and grain boundary effects in the material. Alternative current (ac) conductivity versus frequency curve of the structures displayed two different conductivity regimes. Nearly dc conductivity for the low frequencies and the dispersive region of the high-frequency band was obtained. The increase in ac conductivity with increasing frequency has been explained in the context of the Quantum Mechanical Tunneling (QMT) mechanism for PVAc-Si film-induced devices. According to the capacitance-voltage measurement, it is also shown that there is a hysteresis for flat band capacitance in between the applied forward and reverse voltage. Reduction of this hysteresis is achieved by the applied voltage across terminals of the PVAc-Si film-induced MIS structure. This controllable reduction in hysteresis may find a place in an application for floating gate memory devices. This study also provides to understand the effect of insulator layer thickness on the dielectric behavior of MIS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ahmad Z, Ooi PC, Sulaiman K et al (2012) Programmable nonvolatile memory based on gold nanoparticles in poly-methyl-silsesquioxane sol–gel. Microelectron Eng 99:62–66. https://doi.org/10.1016/J.MEE.2012.07.106

    Article  CAS  Google Scholar 

  2. Grecu S, Bronner M, Opitz A, Brütting W (2004) Characterization of polymeric metal-insulator–semiconductor diodes. Synth Met 146:359–363. https://doi.org/10.1016/J.SYNTHMET.2004.08.014

    Article  CAS  Google Scholar 

  3. Ahmad Z, Ooi PC, Aw KC, Sayyad MH (2011) Electrical characteristics of poly(methylsilsesquioxane) thin films for non-volatile memory. Solid State Commun 151:297–300. https://doi.org/10.1016/J.SSC.2010.12.002

    Article  CAS  Google Scholar 

  4. Dewa AS, Fung CD, Dipoto EP, Rickert SE (1985) The study of metal-insulator-semiconductor structures with Langmuir-Blodgett insulators. Thin Solid Films 132:27–32. https://doi.org/10.1016/0040-6090(85)90453-5

    Article  CAS  Google Scholar 

  5. Rudra M, Maity R, Sinha TP (2017) Structural and dielectric characterization of Sm2MgMnO6. J Nano- Electron Physics 9:05009-1–05009-5. https://doi.org/10.21272/JNEP.9(5).05009

    Article  Google Scholar 

  6. Erdoǧan IY, Güllü Ö (2010) Silicon MIS diodes with Cr2O3 nanofilm: optical, morphological/structural and electronic transport properties. Appl Surf Sci 256:4185–4191. https://doi.org/10.1016/J.APSUSC.2010.01.122

    Article  Google Scholar 

  7. Çalişkan M, Kuruoğlu F, Serin M et al (2014) Au/PAr/n-CdS/ITO polymer insulated MIS structure. J Optoelectron Adv Mater 16:705–711

    Google Scholar 

  8. Mahani R, Ashery A, Elnasharty MMM (2020) Frequency and voltage dependence of the dielectric properties of Ni/SiO2/P-Si (MOS) structure. Silicon 12:1879–1885. https://doi.org/10.1007/s12633-019-00277-4

    Article  CAS  Google Scholar 

  9. Barkhordari A, Özçelik S, Pirgholi-Givi G, et al (2021) Dielectric Properties of PVP: BaTiO3 Interlayer in the Al/PVP: BaTiO3/P-Si Structure. Silicon 1–7

  10. Uluşan AB, Tataroğlu A (2018) Frequency-dependent dielectric parameters of au/TiO2/n-Si (MIS) structure. Silicon 10:2071–2077

    Article  Google Scholar 

  11. Panneerselvam A, Mohan KS, Marnadu R, Chandrasekaran J (2022) The deep investigation of structural and opto-electrical properties of Yb2O3 thin films and fabrication of Al/Yb2O3/p-Si (MIS) Schottky barrier diode. J Sol-Gel Sci Technol 1–17

  12. Kuruoğlu F, Çalışkan M, Serin M, Erol A (2020) Well-ordered nanoparticle arrays for floating gate memory applications. Nanotechnology 31:215203. https://doi.org/10.1088/1361-6528/ab7043.PMID-31986505

    Article  PubMed  Google Scholar 

  13. Akın Ü, Yüksel ÖF, Tuğluoğlu N (2021) Dielectric Properties of Coronene Film Deposited onto Silicon Substrate by Spin Coating for Optoelectronic Applications. Silicon 1–9

  14. Yuan H, Zhu J, Wang Z et al (2022) Plasmonic gap resonances of electrically excited MIS-AgNR hybrid system. Opt Commun 506:127601

    Article  CAS  Google Scholar 

  15. Lovell PA, El-Aasser M (1997) Wiley: Emulsion Polymerization and Emulsion Polymers - Peter A. Lovell, Mohamed S. El-Aasser. John Wiley & Sons, Ltd., Chichester

  16. Anderson CD, Daniels ES (2003) Emulsion polymerisation and latex applications. Rapra Technology

  17. Karacetin G, Sarac A (2015) Semicontinuous emulsion copolymerization of vinyl acetate and butyl acrylate with nonionic surfactants (Triton X series). Macromol Symp 352:72–77. https://doi.org/10.1002/MASY.201400156

    Article  CAS  Google Scholar 

  18. Ghorbani RE, Zohuri GH, Gholami M (2017) Novel synthesis method and characterization of poly(vinyl acetate-butyl acrylate) latex particles: effect of Silanol-terminated poly(dimethylsiloxane) surfactant on the seeded emulsion copolymerization. J Surfactant Deterg 20:891–904. https://doi.org/10.1007/S11743-017-1971-7

    Article  CAS  Google Scholar 

  19. Eliseeva VI, Ivanchev SS, Kuchanov SI, Lebedev AV (1981) Emulsion polymerization and its applications in industry. Springer, US

    Book  Google Scholar 

  20. Ambrose RJ (1989) Surfactants and interfacial phenomena—2nd edition, by Milton J. Rosen, John Wiley & Sons, Inc., New York, 1989, 431 pp. price: $49.95. John Wiley & Sons, Ltd

  21. Porter MR (1991) Handbook surfactants. Springer, New York

    Book  Google Scholar 

  22. Somasundaran P, Mehta SC, Purohit P (2006) Silicone emulsions. Adv Colloid Interf Sci 128–130:103–109. https://doi.org/10.1016/J.CIS.2006.11.023

    Article  Google Scholar 

  23. Owen MJ, Dvornic PR (2012) Surface Analysis of Silicones; 13.8 Water-Repellent Coatings

  24. Hill RM (2019) Silicone surfactants. 360

  25. Amelia RPD, Gentile S, Nirode WF, Huang L (2016) Quantitative analysis of copolymers and blends of polyvinyl acetate ( PVAc ) using Fourier transform infrared spectroscopy ( FTIR ) and elemental analysis (EA). World J Chem Educ 4:25–31. https://doi.org/10.12691/WJCE-4-2-1

    Article  Google Scholar 

  26. Chumeka W, Tanrattanakul V, Pilard JF, Pasetto P (2013) Effect of poly(vinyl acetate) on mechanical properties and characteristics of poly(lactic acid)/natural rubber blends. J Polym Environ 21:450–460. https://doi.org/10.1007/S10924-012-0531-5

    Article  CAS  Google Scholar 

  27. Maréchal Y (2011) The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data. J Mol Struct 1004:146–155. https://doi.org/10.1016/J.MOLSTRUC.2011.07.054

    Article  Google Scholar 

  28. Mojet BL, Ebbesen SD, Lefferts L (2010) Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem Soc Rev 39:4643–4655. https://doi.org/10.1039/C0CS00014K

    Article  CAS  PubMed  Google Scholar 

  29. Eisenberg D, Kauzmann W (2007) The structure and properties of water. Oxford University Press, Oxford

    Google Scholar 

  30. Suchanicz J (1998) The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater Sci Eng B 55:114–118. https://doi.org/10.1016/S0921-5107(98)00188-3

    Article  Google Scholar 

  31. Misirlioglu BS, Karaman F, Ugraskan V et al (2015) Dielectric relaxation in camphorsulfonic acid-doped polyaniline thin film. J Optoelectron Adv Mater 17:1874–1879

    CAS  Google Scholar 

  32. Ahmad SI, Rauf A, Mohammed T et al (2019) Dielectric, impedance, AC conductivity and low-temperature magnetic studies of Ce and Sm co-substituted nanocrystalline cobalt ferrite. J Magn Magn Mater 492:165666. https://doi.org/10.1016/J.JMMM.2019.165666

    Article  CAS  Google Scholar 

  33. Büyükbaş-Uluşan A, Tataroğlu A (2020) Impedance spectroscopy of au/TiO2/n-Si metal-insulator-semiconductor (MIS) capacitor. Phys B Condens Matter 580:411945. https://doi.org/10.1016/J.PHYSB.2019.411945

    Article  Google Scholar 

  34. Jonda C, Mayer ABR (1999) Investigation of the electronic properties of organic light-emitting devices by impedance spectroscopy. Chem Mater 11:2429–2435. https://doi.org/10.1021/CM991024B

    Article  CAS  Google Scholar 

  35. Maity S, Bhattacharya D, Ray SK (2011) Structural and impedance spectroscopy of pseudo-co-ablated (SrBi2Ta2O9)(1−x)–(La0.67Sr0.33MnO3)x composites. J Phys D Appl Phys 44:095403. https://doi.org/10.1088/0022-3727/44/9/095403

    Article  CAS  Google Scholar 

  36. Zrida H, Hriz K, Jaballah N et al (2016) New soluble anthracene-based polymer for opto-electronic applications. J Mater Sci 51:680–693. https://doi.org/10.1007/S10853-015-9037-6

    Article  CAS  Google Scholar 

  37. Bulgurcuoğlu AE, Karabul Y, Kiliç M et al (2019) Structural analysis and dielectric relaxation mechanism of conducting polymer/volcanic basalt rock composites. Mater Sci-Pol 37:353–363

    Article  Google Scholar 

  38. Özdemir ZG, Klç M, Karabul Y et al (2017) Synthesis and characterization of EuBa2Ca2Cu3O9− x: the influence of temperature on dielectric properties and charge transport mechanism. Mater Sci Semicond Process 63:196–202

    Article  Google Scholar 

  39. Kilic M, Karabul Y, Özdemir ZG et al (2019) Improved dielectric and electrical properties of PANI achieved by using low cost mineral additive. IEEE Trans Dielectr Electr Insul 26:300–307

    Article  CAS  Google Scholar 

  40. Buyukbas-Uluşan A, Yerişkin SA, Tataroğlu A et al (2018) Electrical and impedance properties of MPS structure based on (Cu2O–CuO–PVA) interfacial layer. J Mater Sci Mater Electron 29:8234–8243

    Article  Google Scholar 

  41. Oruç Ç, Erkol A, Altındal A (2017) Characterization of metal (ag,au)/phthalocyanine thin film/semiconductor structures by impedance spectroscopy technique. Thin Solid Films 636:765–772. https://doi.org/10.1016/J.TSF.2017.03.058

    Article  Google Scholar 

  42. Kuruoglu F, Çalışkan M, Yıldırım S, Serin M (2021) Detailed study on effects of gate voltage, frequency and temperature on dielectric properties of cu/PAr/n-CdS/SnO2 MIS Schottky diode. J Phys D Appl Phys 54:145102. https://doi.org/10.1088/1361-6463/ABD80E

    Article  CAS  Google Scholar 

  43. Macdonald JR (1987) Impedance spectroscopy : emphasizing solid materials and systems. Wiley

  44. Rahmouni H, Smari M, Cherif B et al (2015) Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans 44:10457–10466. https://doi.org/10.1039/C5DT00444F

    Article  CAS  PubMed  Google Scholar 

  45. Liang T, Makita Y, Kimura S (2001) Effect of film thickness on the electrical properties of polyimide thin films. Polymer 11:4867–4872. https://doi.org/10.1016/S0032-3861(00)00881-8

    Article  Google Scholar 

  46. Tataroǧlu A, Altindal Ş, Bülbül MM (2005) Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure. Microelectron Eng 81:140–149. https://doi.org/10.1016/J.MEE.2005.04.008

    Article  Google Scholar 

  47. Jonscher AK (1981) A new understanding of the dielectric relaxation of solids. J Mater Sci 16:2037–2060. https://doi.org/10.1007/BF00542364

    Article  CAS  Google Scholar 

  48. Kumar N, Chand S (2020) Effects of temperature, bias and frequency on the dielectric properties and electrical conductivity of Ni/SiO2/p-Si/Al MIS Schottky diodes. J Alloys Compd 817:153294. https://doi.org/10.1016/J.JALLCOM.2019.153294

    Article  CAS  Google Scholar 

  49. Tiwari JP, Shahi K (2007) Super-linear frequency dependence of ac conductivity of disordered ag 2 S–Sb 2 S 3 at cryogenic temperatures. Philos Mag 87:4475–4500. https://doi.org/10.1080/14786430701551913

    Article  CAS  Google Scholar 

  50. Schroder DK (2006) Semiconductor material and device characterization3rd edn. Wiley-IEEE Press, Hoboken

    Google Scholar 

  51. Streetman BG, Banerjee SK (2009) Solid state electronic devices. 581

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Duygu Gülşen and Ayfer Sarac Ozkan synthesized PVAc-Si latex and performed the Colloidal Characterization and FTIR Spectrum of the Latex. Ultraviolet Visible (Uv-Vis) Absorption and Surface Morphology of The PVAc-Si Film were analyzed by Banu Süngü Mısırlıoğlu. Banu Süngü Mısırlıoğlu, Furkan Kuruoğlu and Murat Çalışkan performed the fabrication process of the MIS structures. All the measurements and analyzes of the structures were performed by Banu Süngü Mısırlıoğlu, Furkan Kuruoğlu, Murat Çalışkan and Merih Serin. All authors contributed to the study conception and writing processes of the manuscript.

Corresponding author

Correspondence to Banu Süngü Mısırlıoğlu.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mısırlıoğlu, B.S., Gülşen, D., Kuruoğlu, F. et al. Dielectric Response and Capacitance Measurements of Ag/ PVAc-Si /p-Si Structure. Silicon 14, 10795–10805 (2022). https://doi.org/10.1007/s12633-022-01758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01758-9

Keywords

Navigation