Skip to main content

Advertisement

Log in

Stress Alleviation and Crop Improvement Using Silicon Nanoparticles in Agriculture: a Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon (Si) is not considered as essential element for plant growth and development but it provides benefits to the plants in several ways. Due to distinguishing physiological features, silicon nanoparticles (Si-NPs) enter easily into plants and affect metabolic activities of plant. It provides tolerance to the natural flora under various stressful situations. Biogenic silica (bSi)/ opal also provides resistance to numerous plant pathogens, herbivores and insects. Benefits of Si-NPs are relatively less distinguished in plants. Green synthesis of Si-NPs is possible from various agricultural wastes and helps in waste management without any damage to the environment. Their modes of application are hydroponics, soil-supplementation or foliar spraying and are transported by symplastic or apoplastic pathways. The unique features of mesoporous silica nanoparticles (MSNs) like large surface area makes them ideal candidates as unique carriers for fertilizers and pesticides, giving rise to nano-pesticides and nano-fertilizers that may help in agriculture. It helps to meet the increasing demand for food in the near future. Si-NPs also help in the site-targeted controlled release of nutrients and DNA with enhanced crop productivity and defense. This article introduces the potential of Si-NPs on various aspects of farming sciences that leads to better plant growth, development and productivity in safe and eco-friendly manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  2. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91(1):11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanism of silicon -mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428

    Article  CAS  PubMed  Google Scholar 

  4. Law C, Exley C (2011) New insight into silicon deposition in horsetail (Equisetum arvense). BMC Plant Biol 11:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Datnoff LE, Rodrigues FA (2005) The role of silicon in suppressing rice diseases. APSnet Features. http://apsnet.org/online/feature/silicon/ (February2005)

  6. Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of multigene family of aquaporin silicon transporters in primitive plant Equisetum arvense. Plant J 72(2):320–330

    Article  PubMed  Google Scholar 

  7. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  8. Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83(4–5):303–315

    Article  CAS  PubMed  Google Scholar 

  9. Rao GB, Susmitha P (2017) Silicon uptake, transportation and accumulation in Rice. J Pharmacogn Phytochem 6(6):290–293

    CAS  Google Scholar 

  10. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56(414):1255–1261

    Article  CAS  PubMed  Google Scholar 

  11. Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130(4):2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trembath-Reichert E, Wilson JP, McGlynn SE, Fischer WW (2015) Four hundred million years of silicon biomineralization in land plants. Proc Natl Acad Sci USA 112(17):5449–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Agric Food Chem 2(2):99–102

    CAS  Google Scholar 

  14. Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):1–11

    Article  Google Scholar 

  15. Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84(2):377–410

    Article  CAS  Google Scholar 

  16. Tehri N, Vashishth A, Gahlaut A, Hooda V (2020) Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: current progress and future prospects. Inorg Nano-Met Chem 1–19

  17. O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: application in cell biology and medicine. Int J Nanomed 1(4):451

    Article  Google Scholar 

  18. Wu SH, Moua CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875

    Article  CAS  PubMed  Google Scholar 

  19. Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N (2016) Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnol 10(4):171–177

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV- B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  21. Cui J, Liu T, Li F, Yi J, Liu C, Yu H (2017) Silicon nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369

    Article  CAS  PubMed  Google Scholar 

  22. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  23. Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289

    Article  Google Scholar 

  24. Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM (2016) Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91

    Article  CAS  PubMed  Google Scholar 

  25. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  PubMed  Google Scholar 

  26. Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province. Chem Geol 218(1–2):41–50

    Article  CAS  Google Scholar 

  27. Imoisili PE, Ukoba KO, Jen TC (2020) Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol–gel. J Mater Res Technol 9:307–313

    Article  CAS  Google Scholar 

  28. Adebisia J, Agunsoyea JO, Belloa SA, Haris M, Ramakokovhue MM, Daramolaf MO, Hassan SB (2020) Green production of silica nanoparticles from maize stalk. Part Sci Technol 38:667–675

    Article  Google Scholar 

  29. Pieła A, Żymańczyk-Duda E, Brzezińska-Rodak M, Duda M, Grzesiak J, Saeid A, Mironiuk M, Klimek-Ochab M (2020) Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing. Bioorg Chem 99:103773

  30. San NO, Kurşungöz C, Tümtaş Y, Yaşa O, Ortaç B, Tekinay T (2014) Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 17:29–35

    Article  CAS  Google Scholar 

  31. Kumar V, Tiwari P, Krishnia L, Kumari R, Singh A, Ghosh A, Tyagi PK (2016) Green route synthesis of silicon/silicon oxide from bamboo Adv. Mater Lett 7:271–276

    Article  CAS  Google Scholar 

  32. Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L (2012) Silica nanoparticles and frameworks from rice husk biomass. Appl Mater Interfaces 4(2):977–981

    Article  CAS  Google Scholar 

  33. Palanivelu R, Padmanaban P, Sutha S, Rajendran V (2014) Inexpensive approach for production off high surface area silica nanoparticles from rice hulls biomass. IET Nanobiotechnol 8(4):290–294

    Article  PubMed  Google Scholar 

  34. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    Article  CAS  Google Scholar 

  35. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW (2013) Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata. Ann Bot 112(6):1141–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2014) Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synth React Inorg Metal Org Nano Metal 44(8):1128–1134

    Article  CAS  Google Scholar 

  37. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non graminaceous plant cell wall is rapidly decreased by borate ester cross linking of the pectic polysaccharide rhamnogalacturonan. Plant Physiol 121(3):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33(8):1389–1402

    Article  CAS  PubMed  Google Scholar 

  40. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137

    Article  CAS  PubMed  Google Scholar 

  41. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  42. Bao-Shan L, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Res J For 15(2):138–140

    Article  Google Scholar 

  43. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: A critical review. Front Chem 5:78

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roohizadeh G, Majd A, Arbabian S (2015) The effect of sodium silicate and silica nanoparticles on seed germination and growth in the Vicia faba L. Trop Plant Res 2(2):85–89

    Google Scholar 

  45. Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12(1):1–15

    Google Scholar 

  46. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    Article  CAS  PubMed  Google Scholar 

  47. Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem 127:152–160

    Article  CAS  PubMed  Google Scholar 

  48. Mushinskiy AA, Aminova EV, Korotkova AM (2018) Evaluation of tolerance of tubers Solanum tuberosum to silica nanoparticles. Environ Sci Pollut Res 25(34):34559–34569

    Article  CAS  Google Scholar 

  49. Fatemi H, Pour BE, Rizwan M (2021) Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environ Sci Pollut Res 28(2):1417–1425

    Article  CAS  Google Scholar 

  50. Emamverdian A, Ding Y, Mokhberdoran F, Ahmad Z, Xie Y (2021) The effect of silicon nanoparticles on the seed germination and seedling growth of moso bamboo (Phyllostachys edulis) under cadmium stress. Pol J Environ Stud 30(4):3033–3042

    Article  CAS  Google Scholar 

  51. Khan ZS, Rizwan M, Hafeez M, Ali S, Adrees M, Qayyum MF, Sarwar MA (2020) Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environ Sci Pollut Res 27(5):4958–4968

    Article  CAS  Google Scholar 

  52. Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 115:25–33

    Article  CAS  PubMed  Google Scholar 

  53. Ashkavand P, Tabari M, Zarafshar M, Tomásková I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Leśne P Badaw 76(4):350–359

  54. Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lith 22(1):53–64

    Google Scholar 

  55. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):49–55

    Google Scholar 

  56. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2013) Application of silica nanoparticles for increased silica availability in maize. AIP Conf Proc 1512(1):424–425

    Article  CAS  Google Scholar 

  57. Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  58. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6(16):87–90

    Google Scholar 

  59. Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34(1):279–289

    Article  CAS  Google Scholar 

  60. Jullok N, Van Hooghten R, Luis P, Volodin A, Van Haesendonck C, Vermant J, Van der Bruggen B (2016) Effect of silica nanoparticles in mixed matrix membranes for pervaporation dehydration of acetic acid aqueous solution: plant-inspired dewatering systems. J Clean Prod 112:4879–4889

    Article  CAS  Google Scholar 

  61. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural Nanotechnologies: What are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  62. Mostofa MG, Rahman MM, Ansary MMU, Keya SS, Abdelrahman M, Miah MG, Phan Tran LS (2021) Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol 1–17

  63. Malik MA, Wani AH, Rehman IU, Tahir I, Mir SH, Ahmad P, Rashid I (2021) Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol Biochem 165:187–195

    Article  CAS  PubMed  Google Scholar 

  64. Ranjan A, Sinha R, Bala M, Pareek A, Singla-Pareek SL, Singh AK (2021) Silicon-mediated abiotic and biotic stress mitigation in plants: underlying mechanisms and potential for stress resilient agriculture. Plant Physiol Biochem 163:15–25

    Article  CAS  PubMed  Google Scholar 

  65. Mahmoud LM, Dutt M, Shalan AM, El-Kady ME, El-Boray MS, Shabana YM, Grosser JW (2020) Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S Afr J Bot 132:155–163

    Article  CAS  Google Scholar 

  66. Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81

    Article  CAS  Google Scholar 

  67. Farhangi-Abriz S, Torabian S (2018) Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255(3):953–962

    Article  CAS  PubMed  Google Scholar 

  68. de Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MAM, Hozzein WN, Selim S, Matos M, AbdElgawad H (2019) Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci Total Environ 693:133636

    Article  PubMed  Google Scholar 

  69. Yang X, Shen Z, Zhang B, Yang J, Hong WX, Zhuang Z, Liu J (2013) Silica nanoparticles capture atmospheric lead: Implications in the treatment of environmental heavy metal pollution. Chemosphere 90(2):653–656

    Article  CAS  PubMed  Google Scholar 

  70. Youssef K, de Oliveira AG, Tischer CA, Hussain I, Roberto SR (2019) Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int J Biol Macromol 141:247–258

    Article  CAS  PubMed  Google Scholar 

  71. Cui J, Liang Y, Yang D, Liu Y (2016) Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent. Sci Rep 6(1):1–10

    CAS  Google Scholar 

  72. Rouhani M, Samih MA, Kalantari S (2013) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4(4):297–305

    Google Scholar 

  73. Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc 1–18

  74. El-Bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: Silica nano- particles a potential new insecticide for pest control. Appl Sci Report 4(3):241–246

    Google Scholar 

  75. Ziaee M, Ganji Z (2016) Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. J Plant Protect Res 56(3):250–256

    Article  CAS  Google Scholar 

  76. Magda S, Hussein MM (2016) Determinations of the effect of using silica gel and nano-silica gel against Tuta absoluta (Lepidoptera: Gelechiidae) in tomato fields. J Chem Pharm Res 8(4):506–512

    CAS  Google Scholar 

  77. Robledo-Olivo A, Cabrera-De la Fuente M, Benavides-Mendoza A (2020) In: Kharissova OV, Martínez LMT, Kharisov BI (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham 1–27. https://doi.org/10.1007/978-3-030-11155-7_47

  78. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  79. Chen J, Wang W, Xu Y, Zhang X (2011) Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J Agric Food Chem 59(1):307–311

    Article  CAS  PubMed  Google Scholar 

  80. Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63(3):241–246

    Article  CAS  PubMed  Google Scholar 

  81. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  82. El-Helaly AA, El-Bendary HM, Abdel-Wahab AS, El-Sheikh MAK, Elnagar S (2016) The silica-nano particles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae. J Entomol Zool Stud 4(1):175–180

    Google Scholar 

  83. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  84. Boehm AL, Martinon I, Zeeouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441

    Article  CAS  PubMed  Google Scholar 

  85. Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18(2):137–147

    Article  CAS  PubMed  Google Scholar 

  86. Cunningham FJ, Demirer GS, Goh NS, Zhang H, Landry MP (2020). In: Rustgi S, Luo H (eds) Nanobiolistics: an emerging genetic transformation approach. Springer, New York

    Google Scholar 

  87. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  PubMed  Google Scholar 

  88. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VSY, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164(2):537–547

    Article  CAS  PubMed  Google Scholar 

  89. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allow safe delivery of siRNA and DNA constructs. ACS Nano 3(10):3273–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hedayati A, Hosseini B, Palazon J, Maleki R (2020) Improved tropane alkaloid production and changes in gene expression in hairy root cultures of two Hyoscyamus species elicited by silicon dioxide nanoparticles. Plant Physiol Biochem 155:416–428

    Article  CAS  PubMed  Google Scholar 

  91. Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, Sohani MM (2019) Enhancement of tomato resistance to Tuta absoluta using a new efficient mesoporous silica nanoparticle-mediated plant transient gene expression approach. Sci Hortic 243:367–375

    Article  CAS  Google Scholar 

  92. Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous Silica Nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12(3):2221–2228

    Article  CAS  PubMed  Google Scholar 

  93. Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N (2014) Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hortic 175:1–8

    Article  CAS  Google Scholar 

  94. Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloids Surf B 62(1):42–50

    Article  CAS  Google Scholar 

  95. Ji Y, Ma S, Lv S, Wang Y, Lu S, Liu M (2021) Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl Mater Interfaces 13(36):43374–43386

    Article  CAS  PubMed  Google Scholar 

  96. Plohl O, Gyergyek S, Zemljič LF (2021) Mesoporous silica nanoparticles modified with N-rich polymer as a potentially environmentally-friendly delivery system for pesticides. Microporous Mesoporous Mater 310:110663

    Article  CAS  Google Scholar 

  97. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ghaemi M, Astaraei AR, Emami H, NassiriMahalati M, Sanaeinejad SH (2014) Determining soil indicators for soil sustainability assessment using principal component analysis of Astan Quds- east of Mashhad- Iran. J Soil Sci Plant Nutr 14(4):1005–1020

    Google Scholar 

  99. Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895

    Article  Google Scholar 

  100. Najafi-Ghiri M (2014) Effects of zeolite and vermicompost applications on potassium release from calcareous soils. Soil Water Res 9(1):31–37

    Article  CAS  Google Scholar 

  101. Ghanbari M, Ariafar S (2013) The effects of water deficit and zeolite application on growth traits and oil yield of medicinal peppermint (Mentha piperita L). J Med Arom Plants 3(1):32–39

    Google Scholar 

  102. Ghazavi R (2015) The application effects of natural zeolite on soil runoff, soil drainage and some chemical soil properties in arid land area. Int J Innov Appl Res 13(1):172–177

    Google Scholar 

  103. Jean RD, Chiu KC, Chen TH, Chen CH, Liu DM (2010) Functionalized silica nanoparticles by nanometallic Ag decoration for optical sensing of organic molecule. J Phys Chem 114(37):15633–15639

    CAS  Google Scholar 

  104. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Sci 294(5548):1901–1903

    Article  CAS  Google Scholar 

  105. Nsanzamahoro S, Wang WF, Zhang Y, Shi YP, Yang JL (2021) Synthesis of orange-emissive silicon nanoparticles as “off-on” fluorescence probe for sensitive and selective detection of l-methionine and copper. Talanta 231:122369

    Article  CAS  PubMed  Google Scholar 

  106. Nsanzamahoro S, Zhang Y, Wang WF, Ding YZ, Shi YP, Yang JL (2021) Fluorescence “turn-on” of silicon-containing nanoparticles for the determination of resorcinol. Microchim Acta 188(2):1–9

    Article  Google Scholar 

  107. Liu X, Zhang N, Bing T, Shangguan D (2014) Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+. Anal Chem 86(5):2289–2296

    Article  CAS  PubMed  Google Scholar 

  108. Rastogi SK, Pal P, Aston DE, Bitterwolf TE, Branen AL (2011) 8-aminoquinoline functionalized silica nanoparticles: A fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension. ACS Appl Mater Interfaces 3(5):1731–1739

    Article  CAS  PubMed  Google Scholar 

  109. Liman R, Acikbas Y, Ciğerci İH, Ali MM, Kars MD (2020) Cytotoxic and genotoxic assessment of silicon dioxide nanoparticles by allium and comet tests. Bull Environ Contam Toxicol 104(2):215–221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Anjum Gahlaut.

Ethics declarations

Research involving Human Participants and /or Animals

Not applicable.

Informed Consent

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, K., Hooda, V., Verma, N. et al. Stress Alleviation and Crop Improvement Using Silicon Nanoparticles in Agriculture: a Review. Silicon 14, 10173–10186 (2022). https://doi.org/10.1007/s12633-022-01755-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01755-y

Keywords

Navigation