Skip to main content
Log in

Study on Si-P-Fe and Si-P-Al ternary System Interactions Applied by MIVM Model for the Process of Specific Actual Production

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The content of P in industrial silicon affects the photoelectric conversion efficiency of solar-grade silicon. Based on a large amount of actual production data, this paper uses statistical analysis and MIVM model to study the influence of Fe and Al content on P content in the actual production process of Si-P-Fe and Si-P-Al ternary systems. The results showed that statistical analysis (linear regression) were in good agreement with the results of Si-P-Fe and Si-P-Al calculated by the MIVM model.The presence of Fe and Al at the same temperature has a negative impact on the removal of P, and Al has a greater impact on P.The presence of Fe and Al at the same temperature has a negative impact on the removal of P, and Al has a greater impact on P. The MIVM model calculation results provide a theoretical and technical basis for the development of metallurgical methods to prepare solar-grade polysilicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

Ethics Approval and Consent to Participate.

We don't cover ethics approval and consent to participate.

Consent for Publication.

Not applicable.

References

  1. Ding Z, Yang WJ, Huo KF, Shaw L (2021) Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage. Progress in Chemistry 33(9):1586–1597

    CAS  Google Scholar 

  2. Ding Z, Li SY, Zhou Y, Chen ZQ, Yang WJ, Ma WH, Shaw L (2020) LiBH4 for Hydrogen Storage - New Perspectives. Nano Materials Science 2(2):109–119

    Article  Google Scholar 

  3. Ding Z, Li H, Shaw L (2020) New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chemical Engineering Journal 385, 123856.

  4. Ding Z, Chen ZQ, Ma TY, Lu C-T, Ma WH, Shaw L (2020) Predicting the hydrogen release ability of LiBH4-based mixtures by ensemble machine learning. Energy Storage Materials 27:466–477

    Article  Google Scholar 

  5. Gao MM, Zhao X, Gao A, Li R, Chen WY, Gao M, Liang S, Li HB (2021) Effect of Si Content on the Morphology Evolution of the Si Primary Dendrites in Al-Si Alloy Solvent Refining Process. SILICON. https://doi.org/10.1007/s12633-021-01233-x

    Article  Google Scholar 

  6. Koehler M, Pomaska M, Lentz F, Finger F, Rau U, Ding K (2018) Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells. ACS Appl Mater Interfaces 10(17):14259–14263

    Article  CAS  Google Scholar 

  7. Ren YS, Wang HP, Morita K (2018) Growth control and enrichment of Si crystals from Si-Sn melt by directional solidification. Vacuum 158:86–92

    Article  CAS  Google Scholar 

  8. Li GQ, Lu YS, Xuan QD, Akhlaghi YG, Pei G, Ji J, Zhao XD (2020) Small scale optimization in crystalline silicon solar cell on efficiency enhancement of low-concentrating photovoltaic cell. Sol Energy 202:316–325

    Article  CAS  Google Scholar 

  9. Pinto MA, Frate CA, Rodrigues TO, Caldeira-Pires A (2020) Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant. Utilities Policy 63: 101014.

  10. Alemany C, Trassy C, Pateyron B, Li KI, Delannoy Y (2002) Refining of metallurgical-grade silicon by inductive plasma. Sol Energy Mater Sol Cells 72(1–4):41–48

    Article  CAS  Google Scholar 

  11. Eger WA, Genest A, Roesch N (2012) Thermal Decomposition of Branched Silanes: A Computational Study on Mechanisms. Chemistry-a European Journal 18(29):9106–9116

    Article  CAS  PubMed  Google Scholar 

  12. Xi FS, Li SY, Ma WH, Chen ZJ, Wei KX, Wu JJ (2021) A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon. Hydrometallurgy 201: 105553.

  13. Chigondo F (2018) From Metallurgical-Grade to Solar-Grade Silicon: An Overview. SILICON 10(3):789–798

    Article  CAS  Google Scholar 

  14. Qian GY, Sun LY, Chen H, Wang Z, Wei KX, Ma WH (2020) Enhancing impurities removal from Si by controlling crystal growth in directional solidification refining with Al-Si alloy. Journal of Alloys and Compounds 820: 153300.

  15. Qian GY, Wang Z, Gong XZ, Cao JW, Ma WH (2020) Design of Refining Slag Based on Raman and NMR Spectroscopy Study for Removing Phosphorus for SoG-Si. SILICON 12(1):171–183

    Article  CAS  Google Scholar 

  16. Khajavi LT, Barati M (2017) Thermodynamics of Phosphorus in Solvent Refining of Silicon Using Ferrosilicon Alloys. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 48(1):268–275

    Article  Google Scholar 

  17. Liu SN, Huang K, Zhu HM (2016) Removal of Fe, B and P impurities by enhanced separation technique from silicon-rich powder of the multi-wire sawing slurry. Chem Eng J 299:276–281

    Article  CAS  Google Scholar 

  18. Lai HX, Sheng ZL, Li JT, Xing PF, Luo XT (2018) Enhanced separation of phosphorus from metallurgical grade silicon by CaAl2Si2 phase reconstruction. Sep Purif Technol 191:257–265

    Article  CAS  Google Scholar 

  19. Zhu MY, Yue SY, Wu GX, Tang K, Xu YJ, Safarian J (2021) P removal from Si by Si-Ca-Al alloying-leaching refining: Effect of Al and the CaAl2Si2 phase. Separation and Purification Technology 271.

  20. Jung EJ, Moon BM, Min DJ (2011) Quantitative evaluation for effective removal of phosphorus for SoG-Si. Sol Energy Mater Sol Cells 95(7):1779–1784

    Article  CAS  Google Scholar 

  21. Dhamrin M, Ozaki R, Saitoh T (2002) Quality evaluation and improvement of iron-doped electromagnetic multycrystalline silicon wafers. Sol Energy Mater Sol Cells 74(1–4):203–211

    Article  CAS  Google Scholar 

  22. Kvande R, Mjos O, Ryningen B (2005) Growth rate and impurity distribution in multicrystalline silicon for solar cells. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 413:545–549

    Article  Google Scholar 

  23. Fang M, Lu CH, Huang LQ, Lai HX, Chen J, Li JT, Ma WH, Xing PF, Luo XT (2014) Effect of Calcium-Based Slag Treatment on Hydrometallurgical Purification of Metallurgical-Grade Silicon. Ind Eng Chem Res 53(2):972–979

    Article  CAS  Google Scholar 

  24. Zhu MY, Azarov A, Monakhov E, Tang K, Safarian J (2020) Phosphorus separation from metallurgical-grade silicon by magnesium alloying and acid leaching. Separation and Purification Technology 240: 116614.

  25. Johnston MD, Khajavi LT, Li M, Sokhanvaran S, Barati M (2012) High-Temperature Refining of Metallurgical-Grade Silicon: A Review. Jom 64(8):935–945

    Article  CAS  Google Scholar 

  26. Ma WH, Ogura M, Kobayashi T, Takahashi H (2004) Preparation of solar grade silicon from optical fibers wastes with thermal plasmas. Sol Energy Mater Sol Cells 81(4):477–483

    Article  CAS  Google Scholar 

  27. Khattak CP, Joyce DB, Schmid F (2002) A simple process to remove boron from metallurgical grade silicon. Sol Energy Mater Sol Cells 74(1–4):77–89

    Article  CAS  Google Scholar 

  28. Green MA (2003) Crystalline and thin-film silicon solar cells: state of the art and future potential. Sol Energy 74(3):181–192

    Article  CAS  Google Scholar 

  29. Goswami DY (2007) A review and future prospects of renewable energy in the global energy system. Solar World Congress of the International-Solar-Energy-Society. Beijing, PEOPLES R CHINA, pp 3–10

    Google Scholar 

  30. Evans RC (1952) An Introduction to Crystal Chemistry. University Press. https://doi.org/10.1180/minmag.1965.035.270.31

    Article  Google Scholar 

  31. Iida T, Guthrie R (1988) The Physical Properties of Liquid Metals. Oxford University Press 19–46.

  32. Takamichi I (1993) Physical Properties of Liquid Metals. (I). Characteristic Features of Liquid Metals, and Liquid Metal Processing Operations. Yosetsu Gakkai Shi/Journal of the Japan Welding Society 62(7):508–511.

  33. Hultgren RR (1973) Selected values of the thermodynamic properties of binary alloys. American Society for Met, Selected values of the thermodynamic properties of binary alloys. https://doi.org/10.1017/S0022172400012638

    Book  Google Scholar 

  34. Safarian J, Tangstad M (2012) Kinetics and Mechanism of Phosphorus Removal from Silicon in Vacuum Induction Refining. High Temp Mater Processes (London). https://doi.org/10.1515/htmp.2011.143

    Article  Google Scholar 

  35. Fruehan RJ (1970) The thermodynamic properties of liquid Fe−Si alloys. Metallurgical Transactions 1(4):865–870

    CAS  Google Scholar 

  36. Zaitsev AI, Dobrokhotova ZV, Litvina AD, Mogutnov BM (1995) Thermodynamic properties and phase equilibria in the Fe–P system. J Chem Soc, Faraday Trans 91(4):703–712

    Article  CAS  Google Scholar 

  37. Zou KH, Tuncali K, Silverman SG (2003) Correlation and simple linear regression. Radiology 227(3):617–622

    Article  PubMed  Google Scholar 

  38. Wagner C (2002) Thermodynamics of Alloys. Addision-Wesley Press, Cambridge 1(2):245

    Google Scholar 

  39. Dalaker H (2013) Thermodynamic computations of the interaction coefficients between boron and phosphorus and common impurity elements in liquid silicon. Computer Methods in Materials Science 13(3):407–411

    Google Scholar 

  40. Esfahani S, Barati M (2011) Purification of Metallurgical Silicon Using Iron as Impurity Getter, Part II: Extent of Silicon Purification. Met Mater Int 17(6):1009–1015

    Article  CAS  Google Scholar 

  41. Li X, Wu JJ, Xu M, Ma WH (2019) Separation and purification of silicon from cutting kerf-loss slurry waste by electromagnetic and slag treatment technology. J Clean Prod 211(20):695–703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 51804147) and Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province (No. YNWR-QNBJ-2020-022) and the Major Projects of Yunnan Province (No. 202102AB080013).

Funding

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 51804147) and and the Major Projects of Yunnan Province (No. 202102AB080013).

Author information

Authors and Affiliations

Authors

Contributions

Yaqian Zhu: Conceptualization, Resources, Writing—review & editing, Visualization, Validation, Supervision. Zhengjie Chen: Formal analysis, Validation, Data curation, Writing-original draft, Writing-review&editing. Hongmei Zhang: Conceptualization, Resources, Visualization. Wenhui Ma: Writing—review & editing, Visualization, Supervision.

Corresponding author

Correspondence to Zhengjie Chen.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Chen, Z., Zhang, H. et al. Study on Si-P-Fe and Si-P-Al ternary System Interactions Applied by MIVM Model for the Process of Specific Actual Production. Silicon 14, 10571–10579 (2022). https://doi.org/10.1007/s12633-022-01698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01698-4

Keywords

Navigation