Skip to main content
Log in

Comprehensive Review on Silicon-enhanced Green Nanocomposites Towards Sustainable Development

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The demand for the development of high-performance and eco-friendly nanocomposites is soaring up. This is because of their desired mechanical, thermal, electrical, magnetic, catalytic, and optical properties and their ecofriendly development. The diversity of nanocomposites has introduced them to a wide variety of applications such as drug delivery, biosensors, bone regeneration, solar cells, super capacitors, fuel cells, automobiles etc. The nanocomposites are deemed competing materials for the sustainable development, this is because of their ecofriendly behavior and value addition. This manuscript reviews the status of the silicon enhanced nanocomposites, various classes of nanocomposites such as ceramic based matrix nanocomposites, metal-based matrix nanocomposites, Polymer based matrix nanocomposites, etc. advanced green polymer-based nanocomposites and sustainable nanofillers for nanocomposites. The applications of nanocomposites in various sectors such as energy, automobiles, packaging, biomedical, environment and safety have been critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

N/A.

References

  1. Bhagyaraj SM, Oluwafemi OS (2018)Nanotechnology: the science of the invisible, in Synthesis of inorganic nanomaterials. Elsevier, Amsterdam, p 1–18

  2. Ali A et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roco MC, Williams RS, Alivisatos P (2000) Nanotechnology research directions: IWGN workshop report: vision for nanotechnology in the next decade. Springer Science & Business Media, Berlin

  4. Jolly R (2017) Synthesis, characterization and application of polymer nanocomposite materials. Aligarh Muslim University, Aligarh

  5. Hadef F (2018) An introduction to nanomaterials. In: Environmental Nanotechnology. Springer, Berlin, p 1–58

  6. Palit S (2020) Recent advances in the application of nanotechnology in food industry and the vast vision for the future. In: Nanoengineering in the Beverage Industry. Elsevier, Amsterdam, p 1–34

  7. Fathy A, et al (2012) Compressive and wear resistance of nanometric alumina reinforced copper matrix composites. Mater Des (1980-2015) 36:100-107

  8. El-Kady O, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des (1980-2015) 54:348-353

  9. Pottathara YB, et al (2019) Nanomaterials synthesis: design, fabrication and applications. Elsevier Amsterdam

  10. Kalia S et al (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292(9):2025–2052

    Article  CAS  Google Scholar 

  11. Chen J et al (2019) An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C 7(38):11710–11730

    Article  CAS  Google Scholar 

  12. Khalil HA et al (2015) Cellulosic nanocomposites from natural fibers for medical applications: A review. In: Handbook of polymer nanocomposites. Processing, performance and application. Springer, Berlin, p 475–511

  13. Kefeni KK, Mamba BB (2020) Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. Sustain Mater Technol 23:e00140

    CAS  Google Scholar 

  14. Armentano I et al (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95(11):2126–2146

    Article  CAS  Google Scholar 

  15. DeLeon VH et al (2012) Polymer nanocomposites for improved drug delivery efficiency. Mater Chem Phys 132(2–3):409–415

    Article  CAS  Google Scholar 

  16. Tekade RK, Maheshwari R, Tekade M (2017) Biopolymer-based nanocomposites for transdermal drug delivery. Biopolymer-Based Composites. Elsevier, Amsterdam, pp 81–106

    Chapter  Google Scholar 

  17. Naveen MH, Gurudatt NG, Shim Y-B (2017) Applications of conducting polymer composites to electrochemical sensors: A review. Appl Mater Today 9:419–433

    Article  Google Scholar 

  18. Ogawa M (1994) Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J Am Chem Soc 116(17):7941–7942

    Article  CAS  Google Scholar 

  19. Nossol E, Zarbin AJG (2012) Transparent films from carbon nanotubes/Prussian blue nanocomposites: preparation, characterization, and application as electrochemical sensors. J Mater Chem 22(5):1824–1833

    Article  CAS  Google Scholar 

  20. Arora A, Padua G (2010) Nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  CAS  PubMed  Google Scholar 

  21. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Article  CAS  Google Scholar 

  22. Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3(3):87–104

    Article  CAS  PubMed Central  Google Scholar 

  23. Hule RA, Pochan DJ (2007) Nanocomposites for biomedical applications. MRS Bull 32

  24. Su Y-L, Cheng S-H (2018) A novel electroanalytical assay for sulfamethazine determination in food samples based on conducting polymer nanocomposite-modified electrodes. Talanta 180:81–89

    Article  CAS  PubMed  Google Scholar 

  25. Joshi P et al (2020) Development of polyindole/tungsten carbide nanocomposite-modified electrodes for electrochemical quantification of chlorpyrifos. J Nanostruct Chem 10(1):33–45

    Article  CAS  Google Scholar 

  26. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959

    Article  CAS  Google Scholar 

  27. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  28. Goh C et al (2008) Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68(6):1432–1439

    Article  CAS  Google Scholar 

  29. Shi Y et al (2013) Self-assembly of hierarchical MoS x/CNT nanocomposites (2< x< 3): towards high performance anode materials for lithium ion batteries. Sci Rep 3:2169

    Article  PubMed  PubMed Central  Google Scholar 

  30. Raja M, Ryu SH, Shanmugharaj A (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid)(PLA)/CNT nanocomposites. Eur Polymer J 49(11):3492–3500

    Article  CAS  Google Scholar 

  31. Abbasi H, Antunes M, Velasco JI (2019) Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog Mater Sci 103:319–373

    Article  CAS  Google Scholar 

  32. Loste J et al (2019) Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog Polym Sci 89:133–158

    Article  CAS  Google Scholar 

  33. Liu P et al (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130

    Article  CAS  Google Scholar 

  34. Muhammad A et al (2021) Recent advances and developments in advanced green porous nanomaterial for sustainable energy storage application. J Porous Mater :1–16

  35. Yang Z et al (2019) Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. J Colloid Interface Sci 533:13–23

    Article  CAS  PubMed  Google Scholar 

  36. Sheng Y et al (2019) Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl Surf Sci 465:154–163

    Article  CAS  Google Scholar 

  37. Mohammadnezhad G, Keikavousi A, Behbahan (2020) Polymer matrix nanocomposites for heavy metal adsorption: a review. J Iran Chem Soc 17(6):1259–1281

    Article  CAS  Google Scholar 

  38. Clancy AJ, Anthony DB, De Luca F (2020) Metal Mimics: Lightweight, strong, and tough nanocomposites and nanomaterial assemblies. ACS Appl Mater Interfaces 12(14):15955–15975

    Article  CAS  PubMed  Google Scholar 

  39. Short K, Buren D (2012) Printable spacecraft: Flexible electronic platforms for NASA missions, vol 2. NASA Innovative Advanced Concepts (NAIC), Phase

    Google Scholar 

  40. Asmatulu E (n.d.) Life cycle analysis of nanocomposites. Adv Nanotechnol :111

  41. Lee SH et al (2011) Tailored assembly of carbon nanotubes and graphene. Adv Func Mater 21(8):1338–1354

    Article  CAS  Google Scholar 

  42. Ma P-C et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A: Appl Sci Manufac 41(10):1345–1367

    Article  CAS  Google Scholar 

  43. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273

    Article  CAS  Google Scholar 

  44. Peigney A et al (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem Phys Lett 352(1–2):20–25

    Article  CAS  Google Scholar 

  45. Gurnani L, Mukhopadhyay A (2020) Development of carbon nanotube-reinforced ceramic matrix nanocomposites for advanced structural applications. Handbook of Advanced Ceramics and Composites: Defense, Security, Aerospace and Energy Applications,  p 929-974

  46. Mohanty P et al (2020) Ultrasonic cavitation: An approach to synthesize uniformly dispersed metal matrix nanocomposites—A review. Nano-Struct Nano-Objects 23:100475

  47. Azarniya A et al (2017) Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites. Nanoscale 9(35):12779–12820

    Article  CAS  PubMed  Google Scholar 

  48. Saxena A et al (2017) Effect of ceramic reinforcement on the properties of metal matrix nanocomposites. Mater Today Proc 4(4):5561-5570

  49. Tabandeh-Khorshid M et al (2020) Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Compos Part B: Eng 183:107664

    Article  CAS  Google Scholar 

  50. Hassanzadeh-Aghdam MK (2019) Micromechanics-based thermal expansion characterization of SiC nanoparticle-reinforced metal matrix nanocomposites. Proc Inst Mech Eng C J Mech Eng Sci 233(1):190-201

  51. Haghgoo M et al (2019) Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: a micromechanics-based analysis. Proc Inst Mech Eng C J Mech Eng Sci 233(4):676-686

  52. Reddy MP et al (2017) Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog Nat Sci Mater Int 27(5):606–614

    Article  CAS  Google Scholar 

  53. Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotechnol 11(12):1026–1030

    Article  CAS  PubMed  Google Scholar 

  54. Hasnain MS et al (2019) Biodegradable polymer matrix nanocomposites for bone tissue engineering. In: Applications of Nanocomposite Materials in Orthopedics. Elsevier, Amsterdam, p 1–37

  55. Llevot A et al (2016) Renewability is not enough: recent advances in the sustainable synthesis of biomass-derived monomers and polymers. Chem–A Eur J 22(33):11510–11521

    Article  CAS  Google Scholar 

  56. Tsujimoto T, Uyama H, Kobayashi S (2003) Green nanocomposites from renewable resources: biodegradable plant oil-silica hybrid coatings. Macromol Rapid Commun 24(12):711–714

    Article  CAS  Google Scholar 

  57. Akram D et al (2010) Silica reinforced organic–inorganic hybrid polyurethane nanocomposites from sustainable resource. Macromol Chem Phys 211(4):412–419

    Article  CAS  Google Scholar 

  58. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582

    Article  CAS  Google Scholar 

  59. Lvov Y et al (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250

    Article  CAS  PubMed  Google Scholar 

  60. Cavallaro G et al (2014) Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim 117(3):1293–1298

    Article  CAS  Google Scholar 

  61. Zhou S, Strømme M, Xu C (2019) Highly transparent, flexible, and mechanically strong nanopapers of cellulose nanofibers@ metal–organic frameworks. Chemistry–A European Journal 25(14):3515–3520

    Article  CAS  PubMed  Google Scholar 

  62. Wang M et al (2015) Hierarchical SnO2/carbon nanofibrous composite derived from cellulose substance as anode material for lithium-ion batteries. Chemistry–A European Journal 21(45):16195–16202

    Article  CAS  PubMed  Google Scholar 

  63. Baran T, Yılmaz N, Baran, Menteş A (2018) Sustainable chitosan/starch composite material for stabilization of palladium nanoparticles: synthesis, characterization and investigation of catalytic behaviour of Pd@ chitosan/starch nanocomposite in Suzuki–Miyaura reaction. Appl Organomet Chem 32(2):e4075

    Article  Google Scholar 

  64. Beeren SR, Meier S, Hindsgaul O (2013) Probing helical hydrophobic binding sites in branched starch polysaccharides using NMR spectroscopy. Chemistry–A European Journal 19(48):16314–16320

    Article  CAS  PubMed  Google Scholar 

  65. Jong L (2013) Natural rubber protein as interfacial enhancement for bio-based nano‐fillers. J Appl Polym Sci 130(3):2188–2197

    Article  CAS  Google Scholar 

  66. Zhang L et al (2018) Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy. Chemistry–A European Journal 24(52):13792–13799

    Article  CAS  PubMed  Google Scholar 

  67. Cho C et al (2016) Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers. Nano Energy 28:426–432

    Article  CAS  Google Scholar 

  68. Ding J et al (2017) Sustainable graphene suspensions: a reactive diluent for epoxy composite valorization. ACS Sustainable Chemistry & Engineering 5(9):7792–7799

    Article  CAS  Google Scholar 

  69. Ellingsen LA-W et al (2016) Nanotechnology for environmentally sustainable electromobility. Nature Nanotechnology 11(12):1039–1051

    Article  CAS  PubMed  Google Scholar 

  70. Fan L-W et al (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 110:163–172

    Article  CAS  Google Scholar 

  71. Costa P et al (2017) High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos Sci Technol 153:241–252

    Article  CAS  Google Scholar 

  72. Zubair M, Ullah A (2020) Recent advances in protein derived bionanocomposites for food packaging applications. Crit Rev Food Sci Nutr 60(3):406–434

    Article  CAS  PubMed  Google Scholar 

  73. Majumdar B, Sarma D, Sarma TK (2019) Development of carbon nanomaterials and their composites for various catalytic applications. In: Carbon-based nanofiller and their rubber nanocomposites. Elsevier, Amsterdam, p 425–439

  74. Kausar A (2021) Green nanocomposites for energy storage. J Compos Sci 5(8):202

    Article  CAS  Google Scholar 

  75. Chow CF et al (2016) Combined chemical activation and Fenton degradation to convert waste polyethylene into high-value fine chemicals. Chem Eu J 22(28):9513–9518

    Article  CAS  Google Scholar 

  76. Fang Y et al (2018) Thermal-driven self-healing and recyclable waterborne polyurethane films based on reversible covalent interaction. ACS Sustain Chem Eng 6(11):14490–14500

    Article  CAS  Google Scholar 

  77. Vieira IRS et al (2019) Waterborne poly (urethane-urea) s films as a sustained release system for ketoconazole. E-Polymers 19(1):168–180

    Article  CAS  Google Scholar 

  78. Fang W, Liu L, Guo G (2017) Tunable wettability of electrospun polyurethane/silica composite membranes for effective separation of water-in‐oil and oil‐in‐water emulsions. Chem Eur J 23(47):11253–11260

    Article  CAS  PubMed  Google Scholar 

  79. Dimitry O et al (2011) Studies of particle dispersion in elastomeric polyurethane/organically modified montmorillonite nanocomposites. Int J Green Nanotechnol 3(3):197–212

    Article  CAS  Google Scholar 

  80. Ambrosi A, Pumera M (2016) Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem Eur J 22(1):153–159

    Article  CAS  PubMed  Google Scholar 

  81. Vieira IRS et al (2020) Waterborne poly (urethane-urea) s nanocomposites reinforced with clay, reduced graphene oxide and respective hybrids: synthesis, stability and structural characterization. J Polym Environ 28(1):74–90

    Article  CAS  Google Scholar 

  82. Singh J, Dhaliwal A (2019) Water retention and controlled release of KCl by using microwave-assisted green synthesis of xanthan gum-cl-poly (acrylic acid)/AgNPs hydrogel nanocomposite. Polym Bull :1–27

  83. Kumar R, Rai B, Kumar G (2019) A simple approach for the synthesis of cellulose nanofiber reinforced chitosan/PVP bio nanocomposite film for packaging. J Polym Environ 27(12):2963–2973

    Article  CAS  Google Scholar 

  84. Shen Y et al (2010) Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au–Pt/TiO2 catalysts. Chem Eur J 16(25):7368–7371

    Article  CAS  PubMed  Google Scholar 

  85. Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15–16):2724–2733

    Article  CAS  Google Scholar 

  86. Chieng BW et al (2012) Graphene nanoplatelets as novel reinforcement filler in poly (lactic acid)/epoxidized palm oil green nanocomposites: Mechanical properties. Int J Mol Sci 13(9):10920–10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pathak V, Ambrose RK (2020) Starch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortage. J Appl Polym Sci 137(14):48523

    Article  CAS  Google Scholar 

  88. McGlashan SA, Halley PJ (2003) Preparation and characterisation of biodegradable starch-based nanocomposite materials. Polym Int 52(11):1767–1773

    Article  CAS  Google Scholar 

  89. Schwach E, Averous L (2004) Starch-based biodegradable blends: morphology and interface properties. Polym Int 53(12):2115–2124

    Article  CAS  Google Scholar 

  90. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345

    Article  CAS  Google Scholar 

  91. Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  92. Cheviron P, Gouanvé F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298

  93. Jalal Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12(3):617–624

    Article  PubMed  CAS  Google Scholar 

  94. Kang H et al (2014) Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Compos Sci Technol 92:1–8

    Article  CAS  Google Scholar 

  95. Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Ind Crop Prod 33(2):259–276

    Article  CAS  Google Scholar 

  96. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: A review. J Macromol Sci C: Polymer Rev 44(3):231–274

    Article  CAS  Google Scholar 

  97. Rinaldi R et al (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55(29):8164–8215

    Article  CAS  Google Scholar 

  98. El-Aghoury A et al (2006) Contribution to the study of fungal attack on some plasticized vinyl formulations. J Polym Environ 14(2):135

    Article  CAS  Google Scholar 

  99. Canetti M, Bertini F (2007) Supermolecular structure and thermal properties of poly (ethylene terephthalate)/lignin composites. Compos Sci Technol 67(15–16):3151–3157

    Article  CAS  Google Scholar 

  100. Graupner N (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly (lactic acid)(PLA) composites. J Mater Sci 43(15):5222–5229

    Article  CAS  Google Scholar 

  101. Bartolucci C et al (2020) Green nanomaterials fostering agrifood sustainability. TrAC Trends Anal Chem 125:115840

    Article  CAS  Google Scholar 

  102. Patwardhan SV, Staniland SS (2019) Green Nanomaterials. IOP Publishing, Bristol

  103. Morsi M et al (2019) Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J Market Res 8(6):5996–6010

    CAS  Google Scholar 

  104. Bondarev D et al (2017) Microporous conjugated polymers via homopolymerization of 2, 5-diethynylthiophene. Eur Polym J 92:213–219

    Article  CAS  Google Scholar 

  105. Gu C et al (2014) Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo‐and biosensing. Angew Chem Int Ed 53(19):4850–4855

    Article  CAS  Google Scholar 

  106. Rao Y et al (2002) Novel polymer–ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. J Appl Polym Sci 83(5):1084–1090

    Article  CAS  Google Scholar 

  107. Cao X et al (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109(6):3804–3810

    Article  CAS  Google Scholar 

  108. Chen L et al (2015) White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 14:372–381

    Article  CAS  Google Scholar 

  109. Zhang Q et al (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26(40):6829–6851

    Article  CAS  PubMed  Google Scholar 

  110. Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22

    Article  CAS  PubMed  Google Scholar 

  111. Ghaderi M et al (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65

    Article  CAS  PubMed  Google Scholar 

  112. Nassar MA, Youssef AM (2012) Mechanical and antibacterial properties of recycled carton paper coated by PS/Ag nanocomposites for packaging. Carbohydr Polym 89(1):269–274

    Article  CAS  PubMed  Google Scholar 

  113. Jatoi AS et al (2020) Improving fermentation industry sludge treatment as well as energy production with constructed dual chamber microbial fuel cell. SN Appl Sci 2(1):1–8

    Article  CAS  Google Scholar 

  114. Mann GS et al (2020) Green composites: A review of processing technologies and recent applications. J Thermoplast Compos Mater 33(8):1145–1171

    Article  CAS  Google Scholar 

  115. Georgios K, Silva A, Furtado S (2016) Applications of green composite materials. Biodegrad Green Compos 16:312

    Article  Google Scholar 

  116. Furtado SC, Araújo AL, Silva A (2018) Inverse characterization of vegetable fibre-reinforced composites exposed to environmental degradation. Compos Struct 189:529–544

    Article  Google Scholar 

  117. Guo J et al (2013) Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat Commun 4(1):1–8

    Article  Google Scholar 

  118. Zhuang X et al (2015) Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Adv Mater 27(25):3789–3796

    Article  CAS  PubMed  Google Scholar 

  119. Yang C et al (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3(29):14929–14941

    Article  CAS  Google Scholar 

  120. Chen S, Skordos A, Thakur VK (2020) Functional nanocomposites for energy storage: chemistry and new horizons. Mater Today Chem 17:100304

    Article  CAS  Google Scholar 

  121. Jin J, Shi Z-q, Wang C-y (2014) Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries. Electrochim Acta 141:302–310

    Article  CAS  Google Scholar 

  122. Zainab G et al (2020) Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption. J Colloid Interface Sci 561:659–667

    Article  CAS  PubMed  Google Scholar 

  123. Mustafov SD et al (2019) Fabrication of conductive Lignin/PAN carbon nanofibers with enhanced graphene for the modified electrodes. Carbon 147:262–275

    Article  CAS  Google Scholar 

  124. Chen T et al (2014) Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem A 2(12):4117–4121

    Article  CAS  Google Scholar 

  125. Tao X et al (2020) Ni@ Ni2P Encapsulation in Interconnected N-doped carbonized cellulose nanofibril network for efficient oxygen evolution reaction. ACS Sustain Chem Eng 8(4):1859–1867

    Article  CAS  Google Scholar 

  126. Tang J et al (2019) Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym 208:404–412

    Article  CAS  PubMed  Google Scholar 

  127. Dahal B et al (2020) An innovative synthetic approach for core-shell multiscale hierarchically porous boron and nitrogen codoped carbon nanofibers for the oxygen reduction reaction. J Power Sources 453:227883

    Article  CAS  Google Scholar 

  128. Zhang Y et al (2019) Bio-based carbon-enhanced tungsten-based bimetal oxides as counter electrodes for dye-sensitized solar cells. J Power Sources 423:339–348

    Article  CAS  Google Scholar 

  129. Gurunathan P, Karthick MG, Babu, Ramesha K (2020) Template assisted synthesis of Sn@ C microspheres and SnO2@ C micro bowls as anode for Li-Ion batteries. Energy Storage 2(5):e152

    Article  CAS  Google Scholar 

  130. Nie H et al (2019) Nitrogen-doped hierarchical porous CNF derived from fibrous structured hollow ZIF-8 for a high-performance supercapacitor electrode. RSC Adv 9(69):40636–40641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maruyama J et al (2020) Helical pore alignment on cylindrical carbon. Small 16(2):1905916

    Article  CAS  Google Scholar 

  132. Yue L et al (2020) Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J Mater Chem A

  133. Ge X et al (2019) Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem 131(41):14720–14725

    Article  Google Scholar 

  134. Liu H et al (2020) Direct tuning of meso-/micro-porous structure of carbon nanofibers confining Sb nanocrystals for advanced sodium and potassium storage. J Alloys Compd :155127

  135. Liang S et al (2020) A chronicle review of nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium‐Ion battery alloying anodes. Small Methods :2000218

  136. Zhang X et al (2018) Nanofibers with MoS2 nanosheets encapsulated in carbon as a binder-free anode for superior lithium storage. New Carbon Mater 33(6):554–561

    Article  CAS  Google Scholar 

  137. Wiesberg IL et al (2019) Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol. Renew Sustain Energy Rev 112:720–732

    Article  CAS  Google Scholar 

  138. Stojanovska E et al (2018) Nanofibrous composites for sodium-ion batteries. In: Polymer-based Nanocomposites for Energy and Environmental Applications. Elsevier, Amsterdam, p 333–360

  139. Jamshidian M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  PubMed  Google Scholar 

  140. Endres H-J (2017) Bio-based thermoplastic and thermosets polymer. Lightweight and sustainable materials for automotive applications, p 139-166

  141. Wei T et al (2012) Tough bio-based elastomer nanocomposites with high performance for engineering applications. Adv Eng Mater 14(1‐2):112–118

    Article  CAS  Google Scholar 

  142. Aimer M et al (2016) Reactive extraction of lactic acid by using Tri-n‐octylamine: structure of the ionic phase. Chem Eur J 22(10):3268–3272

    Article  CAS  PubMed  Google Scholar 

  143. Kalita D, Netravali A (2017) Thermoset resin based fiber reinforced biocomposites. Textile Finish 425

  144. Tiwari A (2012) Biotechnology in biopolymers: developments, applications & challenging areas. Smithers Rapra, Shawbury

  145. Hardy JG et al (2016) Responsive biomaterials: advances in materials based on shape-memory polymers. Adv Mater 28(27):5717–5724

    Article  CAS  PubMed  Google Scholar 

  146. Guerra AJ et al (2018) Effects of different sterilization processes on the properties of a novel 3D-printed polycaprolactone stent. Polym Adv Technol 29(8):2327–2335

    Article  CAS  Google Scholar 

  147. Nutan B, Singh Chandel AK, Jewrajka SK (2017) Synthesis and multi-responsive self‐assembly of cationic poly (caprolactone)–poly (ethylene glycol) multiblock copolymers. Chem Eur J 23(34):8166–8170

    Article  CAS  PubMed  Google Scholar 

  148. Drzal LT, Mohanty A, Misra M (2001) Bio-composite materials as alternatives to petroleum-based composites for automotive applications. Magnesium 40(60):1

    Google Scholar 

  149. Ray D (2015) 12 state-of-the-art applications of natural fiber composites in the industry. Nat Fiber Compos 5:319

    Article  Google Scholar 

  150. Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667

    Article  CAS  PubMed  Google Scholar 

  151. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. Jom 58(11):80–86

    Article  CAS  Google Scholar 

  152. Akampumuza O et al (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38(11):2553–2569

    Article  CAS  Google Scholar 

  153. Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652

    Article  CAS  Google Scholar 

  154. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    Article  CAS  Google Scholar 

  155. Tang XZ et al (2012) Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  CAS  PubMed  Google Scholar 

  156. Youssef AM (2013) Polymer Nanocomposites as a New Trend for Packaging Applications. Polym-Plast Technol Eng 52(7):635–660

    Article  CAS  Google Scholar 

  157. Sangroniz A et al (2019) Improving the barrier properties of a biodegradable polyester for packaging applications. Eur Polymer J 115:76–85

    Article  CAS  Google Scholar 

  158. Simões CL, Viana JC, Cunha AM (2009) Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. J Appl Polym Sci 112(1):345–352

    Article  CAS  Google Scholar 

  159. Pandey JK, Singh RP (2005) Green Nanocomposites from Renewable Resources: Effect of Plasticizer on the Structure and Material Properties of Clay-filled Starch. Starch - Stärke 57(1):8–15

    Article  CAS  Google Scholar 

  160. Zehetmeyer G et al (2012) Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym Bull 68(8):2199–2217

    Article  CAS  Google Scholar 

  161. Tammaro L, Vittoria V, Bugatti V (2014) Dispersion of modified layered double hydroxides in Poly (ethylene terephthalate) by High Energy Ball Milling for food packaging applications. Eur Polymer J 52:172–180

    Article  CAS  Google Scholar 

  162. Shan G-F et al (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid Polym Sci 289(9):1005-1014

  163. Heydari A, Alemzadeh I, Vossoughi M (2013) Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mater Des 50:954–961

    Article  CAS  Google Scholar 

  164. Dehnad D et al (2014) Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154

    Article  CAS  PubMed  Google Scholar 

  165. Galotto MJ et al (2010) Effect of high-pressure food processing on the mass transfer properties of selected packaging materials. Packag Technol Sci 23(5):253–266

    Article  CAS  Google Scholar 

  166. Sengupta R et al (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47(11):1956–1974

    Article  CAS  Google Scholar 

  167. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798

    Article  CAS  Google Scholar 

  168. Ngiam M et al (2008) Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Tissue Eng Part A 15(3):535–546

    Article  Google Scholar 

  169. Qian J et al (2014) Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Mater Sci Eng C 36:95–101

    Article  CAS  Google Scholar 

  170. Ramakrishna S et al (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  CAS  Google Scholar 

  171. Singh MK et al (2008) Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate): a nanocomposite material for biomedical applications. Adv Func Mater 18(5):694–700

    Article  CAS  Google Scholar 

  172. Santo VE et al (2010) Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. J Supercrit Fluids 54(3):320–327

    Article  CAS  Google Scholar 

  173. Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol 51(4):583–589

    Article  CAS  PubMed  Google Scholar 

  174. La LBT et al (2018) Green lightweight lead-free Gd2O3/epoxy nanocomposites with outstanding X-ray attenuation performance. Compos Sci Technol 163:89–95

    Article  CAS  Google Scholar 

  175. Zhang L et al (2018) Boosting lithium storage properties of mof derivatives through a wet-spinning assembled fiber strategy. Chem Eur J 24(52):13792–13799

    Article  CAS  PubMed  Google Scholar 

  176. Abidi N et al (2007) Cotton fabric surface modification for improved UV radiation protection using sol–gel process. J Appl Polym Sci 104(1):111–117

    Article  CAS  Google Scholar 

  177. Chow C-F et al (2016) Combined chemical activation and Fenton degradation to convert waste polyethylene into high-value fine chemicals. Chem Eur J 22(28):9513–9518

    Article  CAS  PubMed  Google Scholar 

  178. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to chemical engineering department DUET Karachi for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the content of the article based on their domain expertise. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Abdul Sattar Jatoi or Shoaib Ahmed.

Ethics declarations

Consent for Publication

N/A.

Ethics Approval and Consent to Participate

N/A.

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

No applicable.

Informed Consent

The publication is approved by all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatoi, A.S., Ahmed, S., Muhammad, A. et al. Comprehensive Review on Silicon-enhanced Green Nanocomposites Towards Sustainable Development. Silicon 14, 7383–7398 (2022). https://doi.org/10.1007/s12633-021-01516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01516-3

Keywords

Navigation