Skip to main content
Log in

Spectroscopic and Quantum Chemical Computational Studies of Silica Nanocrystals Extracted from Rice Straw

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silica nanoparticles are of substantial interest because of having exclusive potential to be canvassed in vast applications. A number of reports are available in literature which depicts the synthesis/extraction of amorphous silica in micro or macro sized dimensions by using harsh chemicals at high temperature conditions. To our knowledge, no research work has been reported so far for preparation of cristobalite silica nanoparticles using non-biodegradable agriculture waste, i.e., rice straw at ambient conditions. Therefore, the present work is focused on the extraction of cristobalite form of silica using rice straw, which may lead to natural degradation of rice straw in environment. The synthesized product has been successfully characterized using spectroscopic techniques, like XRD, EDS, FESEM, FT-IR, DLS and UV-vis spectroscopy. Attempt has been made to explore the theoretical basis of silica nanoparticles by considering quantum chemical nanocluster, i.e., Si8O16 within the framework of Hartree-Fock and Density functional theory. Computational studies have been carried out to explain the behavior of silica nanoparticles in detail by means of important thermodynamic parameters, global reactivity descriptors, electrostatic potential mapping, etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Manuscript contains original work, which is conducted in our laboratory and latter on compared with literature. Supplementary material and data has also been attached.

References

  1. Ribeiro T, Raja S, Rodrigues AS, Fernandes F, Baleizão C, Farinha JPS (2014) NIR and visible perylenediimide-silica nanoparticles for laser scanning bioimaging. Dyes Pigments 110:227–234. https://doi.org/10.1016/j.dyepig.2014.03.026

    Article  CAS  Google Scholar 

  2. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–327. https://doi.org/10.1016/j.nano.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  3. Bailly M, Kontopoulou M, El Mabrouk K (2010) Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer 51:5506–5515. https://doi.org/10.1016/j.polymer.2010.09.051

    Article  CAS  Google Scholar 

  4. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites: a review. J Nanomater 2012:1–15. https://doi.org/10.1155/2012/132424

    Article  CAS  Google Scholar 

  5. Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40:5861–5877. https://doi.org/10.1021/ie010284b

    Article  CAS  Google Scholar 

  6. Fernandes IJ, Calheiro D, Sánchez FAL, Camacho ALD, Rocha TLAC, Moraes CAM, Sousa VC (2017) Characterization of silica produced from rice husk ash: comparison of purification and processing methods. Mater Res 20:519–525. https://doi.org/10.1590/1980-5373-mr-2016-1043

    Article  Google Scholar 

  7. Lu P, Hsieh YL (2012) Highly pure amorphous silica nano-disks from rice straw. Powder Technol 225:149–155. https://doi.org/10.1016/j.powtec.2012.04.002

    Article  CAS  Google Scholar 

  8. Kauldhar BS, Yadav SK (2018) Turning waste to wealth: a direct process for recovery of nano-silica and lignin from paddy straw agro-waste. J Clean Prod 194:158–166. https://doi.org/10.1016/j.jclepro.2018.05.136

    Article  CAS  Google Scholar 

  9. Puzder A, Williamson AJ, Grossman JC, Galli G (2003) Computational studies of the optical emission of silicon nanocrystals. J Am Chem Soc 125:2786–2791. https://doi.org/10.1021/ja0293296

    Article  CAS  PubMed  Google Scholar 

  10. Abdulsattar MA (2014) Modeling the electronic, structural and vibrational properties of cubic SiC nanocrystals built from diamondoid structures. Silicon 8:239–244. https://doi.org/10.1007/s12633-014-9246-7

    Article  CAS  Google Scholar 

  11. Schweigert IV, Lehtinen KEJ, Carrier MJ, Zachariah MR (2002) Structure and properties of silica nanoclusters at high temperatures. Phys Rev B 65:1–9. https://doi.org/10.1103/PhysRevB.65.235410

    Article  CAS  Google Scholar 

  12. Uchino T, Aboshi A, Kohara S, Ohishi Y, Sakashita M, Aoki K (2004) Microscopic structure of nanometer-sized silica particles. Phys Rev B 69:1–8. https://doi.org/10.1103/PhysRevB.69.155409

    Article  CAS  Google Scholar 

  13. Lin KH, Chen HT, Chen HL, Lin JS, Ju SP, Tseng CF, Hsu CH, Yang HW, Lin KF, Weng MH (2013) A density functional theory study on the structure stability of silica nanoclusters. J Nanosci Nanotechnol 13:1414–1417. https://doi.org/10.1166/jnn.2013.6114

    Article  CAS  PubMed  Google Scholar 

  14. Kong Q, Zhao L, Wang W, Wang C, Xu C, Zhang W, Liu L, Fan K, Li Y, Zhuang J (2005) Magic number silicon dioxide-based clusters: laser ablation-mass spectrometric and density functional theory studies. J Comput Chem 26:584–598. https://doi.org/10.1002/jcc.20194

    Article  CAS  PubMed  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian Inc. Wallingford CT

  16. Talmaciu MM, Bodoki E, Oprean R (2016) Global chemical reactivity parameters for several chiral beta-blockers from the density functional theory viewpoint. Clujul med 89:513–518. https://doi.org/10.15386/cjmed-610

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726. https://doi.org/10.1073/pnas.82.20.6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Najafi M, Morsali A, Bozorgmehr MR (2019) DFT study of SiO2 nanoparticles as a drug delivery system: structural and mechanistic aspects. Struct Chem 30:715–726. https://doi.org/10.1007/s11224-018-1227-9

    Article  CAS  Google Scholar 

  19. Xue SH, Xie H, Ping H, Li QC, Su BL, Fu ZY (2015) Induced transformation of amorphous silica to cristobalite on bacterial surfaces. RSC Adv 5:71844–71848. https://doi.org/10.1039/c5ra13619a

    Article  CAS  Google Scholar 

  20. Cullity BD (1978) Elements of X-ray diffraction2nd edn. Addison-Wesley Publishing Company, Phillippines

    Google Scholar 

  21. Stukowski A, Markmann J, Weissmüller J, Albe K (2009) Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids. Acta Mater 57:1648–1654. https://doi.org/10.1016/j.actamat.2008.12.011

    Article  CAS  Google Scholar 

  22. Zhao Y, Zhang J (2008) Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. J Appl Crystallogr 41:1095–1108. https://doi.org/10.1107/S0021889808031762

    Article  CAS  Google Scholar 

  23. Verma J (2018) Analysis on synthesis of silica nanoparticles and its effect on growth of T. Harzianum & Rhizoctonia Species. Biomed J Sci tech res 10:7890–7897. https://doi.org/10.26717/bjstr.2018.10.001972

    Article  Google Scholar 

  24. Zu L, Cui X, Jiang Y, Hu Z, Lian H, Liu Y, Jin Y, Li Y, Wang X (2015) Preparation and electrochemical characterization of mesoporous polyaniline-silica nanocomposites as an electrode material for pseudocapacitors. Materials 8:1369–1383. https://doi.org/10.3390/ma8041369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu B-T, Syu J-R, Wang D-H (2013) Preparation and characterization of conductive SiO2-polyaniline Core-Shell nanoparticles. Int J Chem Eng Appl 4:209–212. https://doi.org/10.7763/ijcea.2013.v4.296

    Article  CAS  Google Scholar 

  26. Peng L, Weimin L, Qunji X (2004) Preparation and characterization of polyaniline grafted silica nanoparticles. Polym Polym Compos 12:695–698. https://doi.org/10.1177/096739110401200805

    Article  CAS  Google Scholar 

  27. Hu S, Hsieh YL (2014) Preparation of activated carbon and silica particles from rice straw. ACS Sustain Chem Eng 2:726–734. https://doi.org/10.1021/sc5000539

    Article  CAS  Google Scholar 

  28. Qasim M, Ananthaiah J, Dhara S, Paik P, Das D (2014) Synthesis and characterization of ultra-fine colloidal silica nanoparticles. Adv Sci Eng Med 6:965–973. https://doi.org/10.1166/asem.2014.1578

    Article  CAS  Google Scholar 

  29. Demuth T, Jeanvoine Y, Hafner J, Ángyán JG (1999) Polymorphism in silica studied in the local density and generalized-gradient approximations. J Phys Condens Matter 11:3833–3874. https://doi.org/10.1088/0953-8984/11/19/306

    Article  CAS  Google Scholar 

  30. Nayak SK, Rao BK, Khanna SN, Jena P (1998) Atomic and electronic structure of neutral and charged SinOm clusters. J Chem Phys 109:1245–1250. https://doi.org/10.1063/1.476675

    Article  CAS  Google Scholar 

  31. Anedda A, Carbonaro CM, Clemente F, Corpino R, Ricci PC (2005) Time resolved ultraviolet photoluminescence of mesoporous silica. J Phys Chem B 109:1239–1242. https://doi.org/10.1021/jp0471397

    Article  CAS  PubMed  Google Scholar 

  32. Mao JX (2014) Atomic charges in molecules: a classical concept in modern computational chemistry. Postdoc J 2:15–18. https://doi.org/10.14304/surya.jpr.v2n2.2

    Article  Google Scholar 

  33. Khalid M, Lodhi HM, Khan MU, Imran M (2021) Structural parameter-modulated nonlinear optical amplitude of acceptor-π-D-π-donor-configured pyrene derivatives: a DFT approach. RSC Adv 11:14237–14250. https://doi.org/10.1039/d1ra00876e

    Article  CAS  Google Scholar 

  34. Yahia MB, Orhan E, Beltrán A et al (2008) Theoretical third-order hyperpolarizability of paratellurite from the finite field perturbation method. J Phys Chem B 112:10777–10781. https://doi.org/10.1021/jp805050s

    Article  CAS  PubMed  Google Scholar 

  35. Swarnalatha N, Gunasekaran S, Nagarajan M, Srinivasan S, Sankari G, Ramkumaar GR (2015) Vibrational, UV spectra, NBO, first order hyperpolarizability and HOMO-LUMO analysis of carvedilol. Spectrochim Acta - Part A Mol Biomol Spectrosc 136:567–578. https://doi.org/10.1016/j.saa.2014.09.070

    Article  CAS  Google Scholar 

  36. Jawaher KR, Indirajith R, Krishnan S, Robert R, Das SJ (2018) Quantum chemical calculations of Cr2O3/ SnO2 using density functional theory method. Pramana J Phys 90:1–6. https://doi.org/10.1007/s12043-018-1526-0

    Article  CAS  Google Scholar 

  37. Chandrakumar KRS, Pal S (2002) The concept of density functional theory based descriptors and its relation with the reactivity of molecular systems: a semi-quantitative study. Int J Mol Sci 3:324–337. https://doi.org/10.3390/i3040324

    Article  CAS  Google Scholar 

  38. Pouchan C, Zhang DY, Bégué D (2006) Polarizability and hyperpolarizability in small silicon clusters. Atoms, Mol Clust Electr Fields:55–73. https://doi.org/10.1142/9781860948862_0003

  39. Li L, Zhou Z, Wang X, Huang W, He Y, Yang M (2008) First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters. Phys Chem Chem Phys 10:6829–6835. https://doi.org/10.1039/b811610e

    Article  CAS  PubMed  Google Scholar 

  40. Makwani D, Vijaya R (2011) Frequency-dependent polarizability of small silicon clusters. Int J Nanosci 10:367–371. https://doi.org/10.1142/S0219581X11008058

    Article  CAS  Google Scholar 

  41. Schutte CJH, Pretorius JA (2011) A computational study of the molecular and crystal structure and selected physical properties of octahydridosilasequioxane-(Si2O3H2)4. I. Electronic and structural aspects. Proc R Soc A Math Phys Eng Sci 467:928–953. https://doi.org/10.1098/rspa.2010.0388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to UGC for awarding National Fellowship for OBC Candidate (student id- 201819-NFO-2018-19-OBC-PUN-78836) to Miss Gagandeep Kaur.

Funding

Not applicable. Only fellowship is provided to Gagandeep Kaur under UGC-National Fellowship for OBC candidate scheme.

Author information

Authors and Affiliations

Authors

Contributions

Experiment devised by Dr. Harpreet Kaur.

Experiment performed by Gagandeep Kaur.

Results and discussion compiled by Gagandeep Kaur.

Research paper is edited by Dr. Harpreet Kaur.

Corresponding author

Correspondence to Harpreet Kaur.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Ethics Approval

Not applicable.

Consent to Participate

Both authors provide their consent to participate in publication.

Consent for Publication

Consent is given for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Kaur, G. Spectroscopic and Quantum Chemical Computational Studies of Silica Nanocrystals Extracted from Rice Straw. Silicon 14, 6803–6816 (2022). https://doi.org/10.1007/s12633-021-01450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01450-4

Keywords

Navigation