Skip to main content

Advertisement

Log in

Metakaolin and Fly Ash-based Matrices for Geopolymer Materials: Setting Kinetics and Compressive Strength

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work aims to study the effects of the curing temperature (40 to 80° C) and the composition of the activating solution (SiO2/Na2O molar ratio of 1 to 1.7) on the process of geopolymerization of fly ash and metakaolin-based matrices. A unique combination of three experimental techniques was used for this purpose: rheology, electrical conductivity, and calorimetry. Correlation among the results indicates that increasing the curing temperature of metakaolin-based mixtures promotes the dissolution of the amorphous phases and therefore favors the formation of the geopolymer phase. However, too rapid dissolution leads to early gelation, which slows down further dissolution and prevents the formation of the geopolymer phase. This explains the existence of a peak compressive strength of about 55 MPa at 60 °C. Mixtures based on fly ash behave differently: increasing the temperature up to 80 °C impacts favorably the dissolution of the vitreous phase and the formation of the geopolymer phase, which results in a continuous increase in the compressive strength up to 57 MPa. Moreover, for both sources of aluminosilicate, it is found that SiO2/Na2O molar ratio of 1.2 provides the suitable alkalinity and the right content of soluble silicate necessary for a good geopolymerization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No supplementary data or materials are available.

References

  1. Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17:668–675. https://doi.org/10.1016/j.jclepro.2008.04.007

    Article  CAS  Google Scholar 

  2. Meyer C (2009) The greening of the concrete industry. Cem Concr Compos 31:601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010

    Article  CAS  Google Scholar 

  3. Rashad AM (2013)Alkali-activated metakaolin: A short guide for civil Engineer-An overview. Constr Build Mater 41:751–765. https://doi.org/10.1016/j.conbuildmat.2012.12.030

    Article  Google Scholar 

  4. Zhuang XY, Chen L, Komarneni S et al (2016) Fly ash-based geopolymer: Clean production, properties and applications. J Clean Prod 125:253–267

    Article  CAS  Google Scholar 

  5. Nikoloutsopoulos N, Sotiropoulou A, Kakali G, Tsivilis S (2018) The effect of Solid/Liquid ratio on setting time, workability and compressive strength of fly ash based geopolymers. In: Materials Today: Proceedings. Elsevier Ltd, pp 27441–27445

  6. Mo BH, Zhu H, Cui XM et al (2014) Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci 99:144–148. https://doi.org/10.1016/j.clay.2014.06.024

    Article  CAS  Google Scholar 

  7. Chen S, Zhang Y, Yan D et al (2020) The influence of Si/Al ratio on sulfate durability of metakaolin-based geopolymer. Constr Build Mater 265:120735. https://doi.org/10.1016/j.conbuildmat.2020.120735

    Article  CAS  Google Scholar 

  8. Gao XX, Michaud P, Joussein E, Rossignol S (2013) Behavior of metakaolin-based potassium geopolymers in acidic solutions. J Non-Cryst Solids 380:95–102. https://doi.org/10.1016/j.jnoncrysol.2013.09.002

    Article  CAS  Google Scholar 

  9. Li X, Rao F, Song S, Ma Q (2019) Deterioration in the microstructure of metakaolin-based geopolymers in marine environment. J Mater Res Technol 8:2747–2752. https://doi.org/10.1016/j.jmrt.2019.03.010

    Article  CAS  Google Scholar 

  10. Lahoti M, Wong KK, Tan KH, Yang EH (2018) Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Mater Des 154:8–19. https://doi.org/10.1016/j.matdes.2018.05.023

    Article  CAS  Google Scholar 

  11. Lahoti M, Wong KK, Yang EH, Tan KH (2018) Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceram Int 44:5726–5734. https://doi.org/10.1016/j.ceramint.2017.12.226

    Article  CAS  Google Scholar 

  12. Hodhod OA, Alharthy SE, Bakr SM (2020) Physical and mechanical properties for metakaolin geopolymer bricks. Constr Build Mater 265:120217. https://doi.org/10.1016/j.conbuildmat.2020.120217

    Article  CAS  Google Scholar 

  13. Temuujin J, Van Riessen A, MacKenzie KJD (2010) Preparation and characterisation of fly ash based geopolymer mortars. Constr Build Mater 24:1906–1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012

    Article  Google Scholar 

  14. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  15. Pouhet R, Cyr M (2016) Formulation and performance of flash metakaolin geopolymer concretes. Constr Build Mater 120:150–160. https://doi.org/10.1016/j.conbuildmat.2016.05.061

    Article  CAS  Google Scholar 

  16. Luan C, Shi X, Zhang K et al (2020) A mix design method of fly ash geopolymer concrete based on factors analysis. Constr Build Mater 272:121612. https://doi.org/10.1016/j.conbuildmat.2020.121612

    Article  CAS  Google Scholar 

  17. Temuujin J, Minjigmaa A, Rickard W et al (2009) Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Appl Clay Sci 46:265–270. https://doi.org/10.1016/j.clay.2009.08.015

    Article  CAS  Google Scholar 

  18. Zhang Z, Wang K, Mo B et al (2015) Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy Build 87:220–225. https://doi.org/10.1016/j.enbuild.2014.11.028

    Article  Google Scholar 

  19. Aboulayt A, Gounni A, Alami ME et al (2020)Thermo-physical characterization of a metakaolin-based geopolymer incorporating calcium carbonate: A case study. Mater Chem Phys 252:123266. https://doi.org/10.1016/j.matchemphys.2020.123266

    Article  CAS  Google Scholar 

  20. Phoo-Ngernkham T, Sata V, Hanjitsuwan S et al (2015) High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Constr Build Mater 98:482–488. https://doi.org/10.1016/j.conbuildmat.2015.08.139

    Article  Google Scholar 

  21. Davidovits J (1991) Geopolymers - Inorganic polymeric new materials. J Therm Anal 37:1633–1656. https://doi.org/10.1007/BF01912193

    Article  CAS  Google Scholar 

  22. Provis JL, Lukey GC, Van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites? a reexamination of existing results. Chem Mater 17:3075–3085

    Article  CAS  Google Scholar 

  23. Provis JL, Van Deventer JSJ (2009) Introduction to geopolymers. In Geopolymers structure, processing, properties and industrial applications; Provis, J.L., van Deventer, J.S.J., Eds. Woodhead Publishing Limited: Cambridge, UK pp. 1–11

  24. Muñiz-Villarreal MS, Manzano-Ramírez A, Sampieri-Bulbarela S et al (2011) The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater Lett 65:995–998. https://doi.org/10.1016/j.matlet.2010.12.049

    Article  CAS  Google Scholar 

  25. Zhang Z, Provis JL, Wang H et al (2013) Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim Acta 565:163–171. https://doi.org/10.1016/j.tca.2013.01.040

    Article  CAS  Google Scholar 

  26. Rees CA, Provis JL, Lukey GC, Van Deventer JSJ (2007) Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23:8170–8179. https://doi.org/10.1021/la700713g

    Article  CAS  PubMed  Google Scholar 

  27. Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci 62:2318–2329. https://doi.org/10.1016/j.ces.2007.01.028

    Article  CAS  Google Scholar 

  28. Yao X, Zhang Z, Zhu H, Chen Y (2009) Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochim Acta 493:49–54. https://doi.org/10.1016/j.tca.2009.04.002

    Article  CAS  Google Scholar 

  29. Kumar S, Kristály F, Mucsi G (2015) Geopolymerisation behaviour of size fractioned fly ash. Adv Powder Technol 26:24–30. https://doi.org/10.1016/j.apt.2014.09.001

    Article  CAS  Google Scholar 

  30. Tennakoon C, Nazari A, Sanjayan JG, Sagoe-Crentsil K (2014) Distribution of oxides in fly ash controls strength evolution of geopolymers. Constr Build Mater 71:72–82. https://doi.org/10.1016/j.conbuildmat.2014.08.016

    Article  Google Scholar 

  31. Tippayasam C, Balyore P, Thavorniti P et al (2016) Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Constr Build Mater 104:293–297. https://doi.org/10.1016/j.conbuildmat.2015.11.027

    Article  CAS  Google Scholar 

  32. Zhang F, Zhang L, Liu M et al (2017) Role of alkali cation in compressive strength of metakaolin based geopolymers. Ceram Int 43:3811–3817. https://doi.org/10.1016/j.ceramint.2016.12.034

    Article  CAS  Google Scholar 

  33. Cho YK, Yoo SW, Jung SH et al (2017) Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer. Constr Build Mater 145:253–260. https://doi.org/10.1016/j.conbuildmat.2017.04.004

    Article  CAS  Google Scholar 

  34. Zuhua Z, Xiao Y, Huajun Z, Yue C (2009) Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci 43:218–223. https://doi.org/10.1016/j.clay.2008.09.003

    Article  CAS  Google Scholar 

  35. Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chem Eng Sci 62:2309–2317. https://doi.org/10.1016/j.ces.2007.01.027

    Article  CAS  Google Scholar 

  36. Rahier H, Wastiels J, Biesemans M et al (2007) Reaction mechanism, kinetics and high temperature transformations of geopolymers. J Mater Sci 42:2982–2996. https://doi.org/10.1007/s10853-006-0568-8

    Article  CAS  Google Scholar 

  37. Aboulayt A, Riahi M, Ouazzani Touhami M et al (2017) Properties of metakaolin based geopolymer incorporating calcium carbonate. Adv Powder Technol 28:2393–2401. https://doi.org/10.1016/j.apt.2017.06.022

    Article  CAS  Google Scholar 

  38. Cai J, Li X, Tan J, Vandevyvere B (2020) Thermal and compressive behaviors of fly ash and metakaolin-based geopolymer. J Build Eng 30:101307. https://doi.org/10.1016/j.jobe.2020.101307

    Article  Google Scholar 

  39. Gao K, Lin KL, Wang D et al (2014) Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr Build Mater 53:503–510. https://doi.org/10.1016/j.conbuildmat.2013.12.003

    Article  Google Scholar 

  40. ASTM C109/C109M (2016) Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, West Conshohocken, PA. https://www.astm.org/

  41. Kumar S, Kumar R (2011) Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceram Int 37:533–541. https://doi.org/10.1016/j.ceramint.2010.09.038

    Article  CAS  Google Scholar 

  42. Zhang Z, Wang H, Zhu Y et al (2014) Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl Clay Sci 88–89:194–201. https://doi.org/10.1016/j.clay.2013.12.025

    Article  CAS  Google Scholar 

  43. Yang T, Yao X, Zhang Z (2014) Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure. Constr Build Mater 59:188–194. https://doi.org/10.1016/j.conbuildmat.2014.01.038

    Article  Google Scholar 

  44. Nath SK (2020) Fly ash and zinc slag blended geopolymer: Immobilization of hazardous materials and development of paving blocks. J Hazard Mater 387:121673. https://doi.org/10.1016/j.jhazmat.2019.121673

    Article  CAS  PubMed  Google Scholar 

  45. Duxson P, Provis JL, Lukey GC et al (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf Physicochem Eng Asp 269:47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support through the R&D Initiative – Appel à projets autour des phosphates APPHOS – sponsored by OCP, OCP Foundation, R&D OCP, Mohammed VI Polytechnic University, National Center of Scientific and technical Research CNRST, Ministry of Higher Education, Scientific Research and Professional Training of Morocco.

Funding

This research is funded by the R&D Initiative—Appel à projets autour des phosphates APPHOS—sponsored by OCP, OCP Foundation, R&D OCP, Mohammed VI Polytechnic University, National Center of Scientific and Technical Research CNRST, Ministry of Higher Education, Scientific Research and Professional Training of Morocco MESRSFC under the project ID * MAT-MOS-01/2017 *.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Rabii Hattaf., and Azzedine Samdi.

Methodology: Redouane Moussa. and Azzedine Samdi.

Validation: Nouha Lahlou., Aboulayt Abdelilah and Redouane Moussa.

Formal analysis: Nouha Lahlou.

Investigation: Rabii Hattaf.

Resources: Mohammed Oouazzani Touhami.

Data curation: Rabii Hattaf.

Writingoriginal draft preparation: Rabii Hattaf., Redouane Moussa.

Visualization: Rabii Hattaf.

Supervision: Aboulayt Aboulayt.

Funding acquisition: Redouane Moussa. and Moussa Gomina.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abdelilah Aboulayt.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval and Consent to Participate

The manuscript is original and has not been published or under consideration for publication somewhere else.

Consent for Publication

All authors have seen, approved and agree to the publication of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattaf, R., Aboulayt, A., Samdi, A. et al. Metakaolin and Fly Ash-based Matrices for Geopolymer Materials: Setting Kinetics and Compressive Strength. Silicon 14, 6993–7004 (2022). https://doi.org/10.1007/s12633-021-01447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01447-z

Keywords

Navigation