Skip to main content
Log in

Intermolecular Interactions between Serine and C60, C59Si, and C59Ge: a DFT Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between Serine (C3H7NO3) and fullerene nanocages, C60, in vacuum. As the frequent introduction of elements as impurities into the structure of nanomaterials can increase the intensity of intermolecular interactions, nanocages doped with silicon and germanium have also been studied as adsorbents, C59Si and C59Ge. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. For this purpose, various functionals, such as B3LYP-D3, ωB97XD, and M062X, have been used. One of the most suitable basis functionals for the systems studied in this research is 6-311G (d), which has been used in both optimization calculations and calculations related to wave function analyses. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions, and quantum theory of atoms in molecules were consistent and in favor of physical adsorption in all systems. Germanium had more adsorption energy than other dopants. The HOMO–LUMO energy gaps were as follows: C60: 5.996, C59Si: 5.309 and C59Ge: 5.188 eV at B3LYP-D3/6–311 G (d) model chemistry. The sensitivity of the adsorption increased when an amino acid molecule interacted with doped C60, and this capability could be used to design nanocarrier to detect Serine amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clausius R (1857) Ueber die Art der Bewegung, welche wir Wärme nennen. Ann Phys 176:353–380

    Article  Google Scholar 

  2. J.D. Van der Waals (1873) Over de Continuiteit van den Gas-en Vloeistoftoestand, Leiden: A.W. Sijthoff

  3. London F (1930) Zur theorie und systematik der molekularkräfte. Z Phys 63:245–279

    Article  CAS  Google Scholar 

  4. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8–26

  5. Spencer ND, Moore JH (2001) Encyclopedia of chemical physics and physical chemistry: CRC Press

  6. Dykstra CE (1988) Ab initio calculation of the structures and properties of molecules. Elsevier, Amsterdam, pp. 275

  7. Elrod MJ, Saykally RJ (1994) Many-body effects in intermolecular forces. Chem Rev 94:1975–1997

    Article  CAS  PubMed  Google Scholar 

  8. Stone AJ (1996) The theory of intermolecular forces, Clarendon, Oxford Stone AJ, Alderton M (1985) distributed multipole analysis–methods and applications. Mol Phys 56:1047–1064

    Article  Google Scholar 

  9. Hayes I, Stone A (1984) An intermolecular perturbation theory for the region of moderate overlap. Mol Phys 53:83–105

    Article  CAS  Google Scholar 

  10. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  11. Stone AJ (1993) Computation of charge-transfer energies by perturbation theory. Chem Phys Lett 211:101–109

    Article  CAS  Google Scholar 

  12. Kreek H, Meath WJ (1969) Charge-overlap effects. Dispersion and induction forces. J Chem Phys 50:2289–2302

    Article  CAS  Google Scholar 

  13. Knowles PJ, Meath WJ (1986) Non-expanded dispersion and induction energies, and damping functions, for molecular interactions with application to HF-he. Mol Phys 59:965–984

    Article  CAS  Google Scholar 

  14. Wheatley RJ, Meath WJ (1994) Induction and dispersion damping functions, and their relative scale with interspecies distance, for (H+, he+, Li+)-(H, he, Li) interactions. Chem Phys 179:341–364

    Article  CAS  Google Scholar 

  15. Van Duijneveldt FB, van Duijneveldt-van de Rijdt JG, van Lenthe JH (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885

    Article  Google Scholar 

  16. Iijima S Helical microtubules of graphitic carbon. Nature 354(1991):56–58

  17. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  18. Geim AK, Novoselov KS (2010) The rise of graphene, Nanoscience and technology: a collection of reviews from nature journals. World Sci:11–19

  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva I, Dubonos S (2005) Firsov, AA, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  PubMed  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  21. Novoselov KS, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guerra V, Wan C, McNally T (2019) Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog Mater Sci 100:170–186

    Article  CAS  Google Scholar 

  23. Li J-l, Yin J-h, Ji T, Feng Y, Liu Y-y, Zhao H, Li Y-p, Zhu C-c, Yue D, Su B (2019) Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated by in-situ SAXS. Mater Lett 234:74–78

    Article  CAS  Google Scholar 

  24. Yang X, Guo Y, Han Y, Li Y, Ma T, Chen M, Kong J, Zhu J, Gu J (2019) Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos Part B 175:107070

    Article  CAS  Google Scholar 

  25. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893

    Article  CAS  Google Scholar 

  26. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409

    Article  CAS  PubMed  Google Scholar 

  27. Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939

    Article  CAS  PubMed  Google Scholar 

  28. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2020) Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Med App:61–91

  29. Rad AS, Aghaei SM (2018) Potential of metal–fullerene hybrids as strong nanocarriers for cytosine and guanine nucleobases: a detailed DFT study. Curr Appl Phys 18:133–140

    Article  Google Scholar 

  30. Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Deliv Rev 64:302–315

    Article  Google Scholar 

  31. Mohammadi MD, Hamzehloo M (2018) The adsorption of bromomethane onto the exterior surface of aluminum nitride, boron nitride, carbon, and silicon carbide nanotubes: a PBC-DFT. NBO, and QTAIM study, Computa Theoret Chem 1144:26–37

    Article  CAS  Google Scholar 

  32. Doust Mohammadi M, Abdullah HY (2020) The Adsorption of Chlorofluoromethane on Pristine, Al-, Ga-, P-, and As-doped Boron Nitride Nanotubes: A PBC-DFT, NBO, and QTAIM Study. ChemistrySelect 5:12115–12124

    Article  CAS  Google Scholar 

  33. Doust Mohammadi M, Abdullah HY (2020) Adsorption of 1-chloro-1, 2, 2, 2-tetrafluoroethane on pristine, Al, Ga-doped boron nitride nanotubes: a study involving PBC-DFT, NBO analysis, and QTAIM. Can J Chem 99:51–62

    Article  CAS  Google Scholar 

  34. Mohammadi MD, Abdullah HY (2020) The adsorption of chlorofluoromethane on pristine, and Al-and Ga-doped boron nitride nanosheets: a DFT, NBO, and QTAIM study. J Mol Model 26:287

    Article  CAS  Google Scholar 

  35. Mohammadi MD, Abdullah HY Theoretical study of the adsorption of amantadine on pristine, Al-, Ga-, P-, and As-doped boron nitride nanosheets: a PBC-DFT, NBO, and QTAIM study. Theor Chem Accounts 139(2020):158

  36. Mohammadi MD, Abdullah HY (2021) The adsorption of bromochlorodifluoromethane on pristine and Ge-doped silicon carbide nanotube: a PBC-DFT, NBO, and QTAIM study. Struct Chem 32:481–494

    Article  CAS  Google Scholar 

  37. Mohammadi MD, Abdullah HY (2021) The adsorption of Bromochlorodifluoromethane on pristine, Al, Ga, P, and as-doped boron nitride nanotubes: a study involving PBC-DFT, NBO analysis, and QTAIM. Computa Theoret Chem 1193:113047

    Article  CAS  Google Scholar 

  38. Mohammadi MD, Abdullah HY (2021) Vinyl chloride adsorption onto the surface of pristine, Al-, and Ga-doped boron nitride nanotube: a DFT study. Solid State Commun 337:114440

    Article  CAS  Google Scholar 

  39. Mohammadi MD, Salih IH, Abdullah HY (2020) An ultimate investigation on the adsorption of amantadine on pristine and decorated fullerenes C59X (X= Si, Ge, B, Al, Ga, N, P, and as): a DFT, NBO, and QTAIM study. J Computa Biophys Chem 20:23–29

    Article  Google Scholar 

  40. Mohammadi MD, Salih IH, Abdullah HY (2020) The adsorption of chlorofluoromethane on pristine and Ge-doped silicon carbide nanotube: a PBC-DFT, NBO, and QTAIM study. Mol Simul 46:1405–1416

    Article  CAS  Google Scholar 

  41. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021) Theoretical investigation of X12O12 (X= be, mg, and ca) in sensing CH2N2: a DFT study. Computa Theoret Chem 1198:113168

    Article  CAS  Google Scholar 

  42. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021) A comprehensive investigation of the intermolecular interactions between CH2N2 and X12Y12 (X = B, Al, Ga; Y = N, P, as) nanocages. Can J Chem 99:733–741

    Article  CAS  Google Scholar 

  43. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021) Enhancing the absorption of 1-chloro-1,2,2,2-tetrafluoroethane on carbon nanotubes: an ab initiostudy. Bull Mater Sci 44:198

    Article  CAS  Google Scholar 

  44. Mohammadi MD, Abdullah HY, Biskos G, Bhowmick S (2021) Effect of Al- and Ga-doping on the adsorption of H2SiCl2 onto the outer surface of boron nitride nanotube: a DFT study. Comptes Rendus Chimie 24:291–304

    Article  CAS  Google Scholar 

  45. Mohammadi MD, Abdullah HY, Kalamse V, Chaudhari A (2021) Adsorption of alkali and alkaline earth ions on nanocages using density functional theory. Computa Theoret Chem 1204:113391

    Article  CAS  Google Scholar 

  46. Mohammadi MD, Abdullah HY, Suvitha A (2021) The adsorption of 1-Chloro-1,2,2,2-Tetrafluoroethane onto the pristine, Al-, and Ga-doped boron nitride Nanosheet, Iranian journal of science and technology. Transact A: Sci 45:1287–1300

    Google Scholar 

  47. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  48. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  49. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  52. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  53. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  54. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  55. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  56. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams FD, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. C.01, Wallingford, CT

  58. Binning Jr R, Curtiss L (1990) Compact contracted basis sets for third-row atoms: Ga–Kr. J Comput Chem 11:1206–1216

    Article  CAS  Google Scholar 

  59. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning Jr RC, Radom L (1995) Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. J Chem Phys 103:6104–6113

    Article  CAS  Google Scholar 

  60. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  61. Hay PJ (1977) Gaussian basis sets for molecular calculations. The representation of 3 d orbitals in transition-metal atoms. J Chem Phys 66:4377–4384

    Article  CAS  Google Scholar 

  62. Blaudeau MPMJ-P, Curtiss LA, Radom L (1997) Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J Chem Phys 107:5016–5021

    Article  CAS  Google Scholar 

  63. Raghavachari JSBK, Seeger R, Pople JA (1980) Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  64. McGrath MP, Radom L (1991) Extension of Gaussian-1 (G1) theory to bromine-containing molecules. J Chem Phys 94:511–516

    Article  CAS  Google Scholar 

  65. Raghavachari K, Trucks GW (1989) Highly correlated systems. Excitation energies of first row transition metals Sc–cu. J Chem Phys 91:1062–1065

    Article  Google Scholar 

  66. Russo TV, Martin RL, Hay PJ (1994) Density functional calculations on first-row transition metals. J Chem Phys 101:7729–7737

    Article  CAS  Google Scholar 

  67. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  PubMed  Google Scholar 

  68. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    Article  CAS  Google Scholar 

  69. Brakestad A, Jensen SR, Wind P, D’Alessandro M, Genovese L, Hopmann KH, Frediani L (2020) Static polarizabilities at the basis set limit: a benchmark of 124 species. J Chem Theory Comput 16:4874–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitra H, Roy TK (2020) Comprehensive benchmark results for the accuracy of basis sets for Anharmonic molecular vibrations. J Phys Chem A 124:9203–9221

    Article  CAS  PubMed  Google Scholar 

  71. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 19:32184–32215

    Article  CAS  PubMed  Google Scholar 

  72. Dennington R, Keith TA, Millam JM (2016) GaussView, version 6.0, vol 16. Semichem Inc, Shawnee Mission KS

    Google Scholar 

  73. Andrienko G.(2010) Chemcraft. Graphical Software for Visualization of Quantum Chemistry Computations, https://www.chemcraftprog.com. Accessed 15 March 2021

  74. Foster AJ, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  75. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  76. Carpenter J, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct THEOCHEM 169:41–62

    Article  Google Scholar 

  77. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  78. O'boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  79. Mayer I, Valiron P (1998) Second order Mo/ller–Plesset perturbation theory without basis set superposition error. J Chem Phys 109:3360–3373

    Article  CAS  Google Scholar 

  80. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  81. Alkorta I, Trujillo C, Elguero J, Solimannejad M (2011) A theoretical study of the hydrogen bonding properties of H2BNH2: some considerations on the basis set superposition error issue. Computa Theoret Chem 967:147–151

    Article  CAS  Google Scholar 

  82. Kohl D (1990) The role of noble metals in the chemistry of solid-state gas sensors. Sensors Actuators B Chem 1:158–165

    Article  CAS  Google Scholar 

  83. J.B. Foresman, A. Frisch, (1996) Exploring chemistry with electronic structure methods: a guide to using Gaussian. 2nd Edition. Gaussian

  84. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  85. Islam N, Kaya S (2018) Conceptual density functional theory and its application in the chemical domain. CRC Press

    Book  Google Scholar 

  86. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  87. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  88. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  89. Levy M (1982) Electron densities in search of Hamiltonians. Phys Rev A 26:1200–1208

    Article  CAS  Google Scholar 

  90. Bredas J-L (2014) Mind the gap! Materi Horiz 1:17–19

    Article  CAS  Google Scholar 

  91. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  92. Janak J (1978) Proof that∂ e∂ n i= ε in density-functional theory. Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  93. Schmidt MW, Hull EA, Windus TL (2015) Valence virtual orbitals: an unambiguous ab initio quantification of the LUMO concept. J Phys Chem A 119:10408–10427

    Article  CAS  PubMed  Google Scholar 

  94. Mulliken RS (1932) Electronic structures of polyatomic molecules and valence. II. General considerations. Phys Rev 41:49

    Article  CAS  Google Scholar 

  95. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  96. Mayer I (1983) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97:270–274

    Article  CAS  Google Scholar 

  97. Mayer I (2012) Improved definition of bond orders for correlated wave functions. Chem Phys Lett 544:83–86

    Article  CAS  Google Scholar 

  98. Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery J (2001) The Mayer bond order as a tool in inorganic chemistry, journal of the chemical society. Dalton Trans:2095–2108

  99. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  100. Sizova OV, Skripnikov LV, Sokolov AY (2008) Symmetry decomposition of quantum chemical bond orders. J Mol Struct THEOCHEM 870:1–9

    Article  CAS  Google Scholar 

  101. Bader RF (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  102. Bader R (1990) A quantum theory. Clarendon, Oxford

    Google Scholar 

  103. Matta CF (2006) Hydrogen–Hydrogen Bonding: The Non-Electrostatic Limit of Closed-Shell Interaction Between Two Hydro, Hydrogen Bonding—New Insights. Springer, pp 337–375

    Book  Google Scholar 

  104. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845

    Article  CAS  PubMed  Google Scholar 

  105. Bohórquez HJ, Boyd RJ, Matta CF (2011) Molecular model with quantum mechanical bonding information. J Phys Chem A 115:12991–12997

    Article  PubMed  CAS  Google Scholar 

  106. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Solid-State Theory Group at the Physics Department at the Universita‘Degli Studi di Milano-Italy for providing computational facilities.

Availability of Data and Materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mohsen Doust Mohammadi: Investigation, Writing - original draft. Hewa Y. Abdullah: Conceptualization, Writing - review & editing, Resources, Supervision.

Corresponding author

Correspondence to Hewa Y. Abdullah.

Ethics declarations

Ethics Approval and Consent to Participate

All authors agree.

Consent for Publication

All authors agree.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doust Mohammadi, M., Abdullah, H.Y. Intermolecular Interactions between Serine and C60, C59Si, and C59Ge: a DFT Study. Silicon 14, 6075–6088 (2022). https://doi.org/10.1007/s12633-021-01408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01408-6

Keywords

Navigation