Skip to main content
Log in

Ab initio investigation for the adsorption of acrolein onto the surface of C60, C59Si, and C59Ge: NBO, QTAIM, and NCI analyses

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between acrolein (C3H4O) and fullerene nanocages, C60, in vacuum. As the frequent introduction of elements as impurities into the structure of nanomaterials can increase the intensity of intermolecular interactions, nanocages doped with silicon and germanium have also been studied as adsorbents, C59Si and C59Ge. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions, and quantum theory of atoms in molecules were consistent and in favor of physical adsorption in all systems. Germanium had more adsorption energy than other dopants. The HOMO–LUMO energy gaps were as follows: C60: 5.996, C59Si: 5.309, and C59Ge: 5.188 eV at B3LYP-D3/6-311G (d) model chemistry. The sensitivity of the adsorption increased when a gas molecule interacted with doped C60, and this capability could be used to design nanosensors to detect acrolein gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Yes, data available in manuscript.

Code availability

Gaussian 16.

References

  1. Clausius R (1857) Ueber die Art der Bewegung, welche wir Wärme nennen. Ann Phys 176(3):353–380

    Article  Google Scholar 

  2. Van der Waals JD (1873) Over de continuïteit van den gas- en vloeistoftoestand

  3. London F (1930) Zur theorie und systematik der molekularkräfte. Z Phys 63(3–4):245–279

    Article  CAS  Google Scholar 

  4. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8b–26

    Article  Google Scholar 

  5. Spencer ND, Moore JH (2001) Encyclopedia of chemical physics and physical chemistry

  6. Dykstra CE (1988) Ab initio calculation of the structures and properties of molecules. Stud Phys Theor Chem (58)

  7. Elrod MJ, Saykally RJ (1994) Many-body effects in intermolecular forces. Chem Rev 94(7):1975–1997

    Article  CAS  PubMed  Google Scholar 

  8. Stone AJ (1996) The theory of intermolecular forces, Clarendon. Oxford Stone AJ, Alderton M (1985) Distributed multipole analysis–methods and applications. Mol Phys 56:1047–1064

  9. Hayes I, Stone A (1984) An intermolecular perturbation theory for the region of moderate overlap. Mol Phys 53(1):83–105

    Article  CAS  Google Scholar 

  10. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94(7):1887–1930

    Article  CAS  Google Scholar 

  11. Stone AJ (1993) Computation of charge-transfer energies by perturbation theory. Chem Phys Lett 211(1):101–109

    Article  CAS  Google Scholar 

  12. Kreek H, Meath WJ (1969) Charge‐overlap effects. Dispersion and Induction Forces. J Chem Phys 50(6):2289–2302

  13. Knowles PJ, Meath WJ (1986) Non-expanded dispersion and induction energies, and damping functions, for molecular interactions with application to HF-He. Mol Phys 59(5):965–984

    Article  CAS  Google Scholar 

  14. Wheatley RJ, Meath WJ (1994) Induction and dispersion damping functions, and their relative scale with interspecies distance, for (H+, He+, Li+)-(H, He, Li) interactions. Chem Phys 179(3):341–364

    Article  CAS  Google Scholar 

  15. Van Duijneveldt FB, van Duijneveldt-van de Rijdt JG, van Lenthe JH (1994) State of the art in counterpoise theory. Chem Rev 94(7):1873–1885

    Article  Google Scholar 

  16. Iijima S (1991) Helical microtubules of graphitic carbon nature 354(6348):56–58

    CAS  Google Scholar 

  17. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. nature 363(6430):603–605

  18. Geim AK, Novoselov KS (2010) The rise of graphene. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific 11–19

  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva I, Dubonos S, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. nature 438(7065):197–200

  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. science 306(5696):666–669

  21. Novoselov KS, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guerra V, Wan C, McNally T (2019) Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog Mater Sci 100:170–186

    Article  CAS  Google Scholar 

  23. Li J-l, Yin J-h, Ji T, Feng Y, Liu Y-y, Zhao H, Li Y-p, Zhu C-c, Yue D, Su B (2019) Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated by in-situ SAXS. Mater Lett 234:74–78

    Article  CAS  Google Scholar 

  24. Yang X, Guo Y, Han Y, Li Y, Ma T, Chen M, Kong J, Zhu J, Gu J (2019) Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Composites Part B: Engineering 175:107070

  25. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21(28):2889–2893

    Article  CAS  Google Scholar 

  26. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6):404–409

    Article  CAS  PubMed  Google Scholar 

  27. Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4(22):6908–6939

    Article  CAS  PubMed  Google Scholar 

  28. Doust Mohammadi M, Abdullah HY (2020a) The Adsorption of Chlorofluoromethane on Pristine, Al-, Ga-, P-, and As-doped Boron Nitride Nanotubes: A PBC-DFT, NBO, and QTAIM Study. ChemistrySelect 5(39):12115–12124

    Article  CAS  Google Scholar 

  29. Doust Mohammadi M, Abdullah HY (2020b) Adsorption of 1-chloro-1, 2, 2, 2-tetrafluoroethane on pristine, Al, Ga-doped boron nitride nanotubes: a study involving PBC-DFT, NBO analysis, and QTAIM. Can J Chem 99:51–62

    Article  Google Scholar 

  30. Mohammadi MD, Abdullah HY (2020a) The adsorption of chlorofluoromethane on pristine, and Al-and Ga-doped boron nitride nanosheets: a DFT, NBO, and QTAIM study. J Mol Model 26(10):287

    Article  Google Scholar 

  31. Mohammadi MD, Abdullah HY (2020b) Theoretical study of the adsorption of amantadine on pristine, Al-, Ga-, P-, and As-doped boron nitride nanosheets: a PBC-DFT, NBO, and QTAIM study. Theoret Chem Acc 139(10):158

    Article  Google Scholar 

  32. Mohammadi MD, Abdullah HY (2021a) The adsorption of bromochlorodifluoromethane on pristine and Ge-doped silicon carbide nanotube: a PBC-DFT, NBO, and QTAIM study. Struct Chem 32:481–494

    Article  Google Scholar 

  33. Mohammadi MD, Abdullah HY (2021b) The adsorption of bromochlorodifluoromethane on pristine, Al, Ga, P, and As-doped boron nitride nanotubes: a study involving PBC-DFT, NBO analysis, and QTAIM. Comput Theor Chem 1193:113047

  34. Mohammadi MD, Salih IH, Abdullah HY (2020c) An ultimate investigation on the adsorption of amantadine on pristine and decorated fullerenes C59X (X= Si, Ge, B, Al, Ga, N, P, and As): a DFT, NBO, and QTAIM study. Journal of Computational Biophysics and Chemistry 20:23–29

    Article  Google Scholar 

  35. Mohammadi MD, Salih IH, Abdullah HY (2020d) The adsorption of chlorofluoromethane on pristine and Ge-doped silicon carbide nanotube: a PBC-DFT, NBO, and QTAIM study. Mol Simul 46:1405–1416

    Article  CAS  Google Scholar 

  36. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021c) Theoretical investigation of X12O12 (X= Be, Mg, and Ca) in sensing CH2N2: A DFT study. Comput Theor Chem 1198:113168

  37. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021d) A comprehensive investigation of the intermolecular interactions between CH2N2 and X12Y12 (X = B, Al, Ga; Y = N, P, As) nanocages. Can J Chem 99:733–741

    Article  CAS  Google Scholar 

  38. Mohammadi MD, Abdullah HY (2021e) Vinyl chloride adsorption onto the surface of pristine, Al-, and Ga-doped boron nitride nanotube: A DFT study. Solid State Commun 337:114440

  39. Mohammadi MD, Abdullah HY, Biskos G, Bhowmick S (2021f) Effect of Al- and Ga-doping on the adsorption of H2SiCl2 onto the outer surface of boron nitride nanotube: a DFT study. C R Chim 24(2):291–304

    Google Scholar 

  40. Mohammadi MD, Abdullah HY, Kalamse V, Chaudhari A (2021g) Adsorption of alkali and alkaline earth ions on nanocages using density functional theory. Comput Theor Chem 1204:113391

  41. Nemati-Kande E, Abbasi M, Mohammadi MD (2020) DFT studies on the interactions of pristine, Al and Ga-doped boron nitride nanosheets with CH3X (X= F, Cl and Br). J Mol Struct 1199:126962

  42. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3(2):214–218

    Article  CAS  Google Scholar 

  43. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985

    Article  CAS  Google Scholar 

  44. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoret Chem Acc 120(1–3):215–241

    Article  CAS  Google Scholar 

  47. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110(49):13126–13130

    Article  CAS  PubMed  Google Scholar 

  48. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  49. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

  51. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. C.01. Wallingford, CT

  53. Binning R Jr, Curtiss L (1990) Compact contracted basis sets for third-row atoms: Ga–Kr. J Comput Chem 11(10):1206–1216

    Article  CAS  Google Scholar 

  54. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC Jr, Radom L (1995) Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. J Chem Phys 103(14):6104–6113

    Article  CAS  Google Scholar 

  55. Frisch MJ, Pople JA, Binkley JS (1984) Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265–3269

  56. Hay PJ (1977) Gaussian basis sets for molecular calculations. The representation of 3 d orbitals in transition‐metal atoms. J Chem Phys 66(10):4377–4384

  57. Blaudeau J.-P, McGrath MP, Curtiss LA, Radom L (1997) Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J Chem Phys 107:5016–5021

    Article  Google Scholar 

  58. Raghavachari K, Seeger R, Pople JA (1980) Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  59. McGrath MP, Radom L (1991) Extension of Gaussian-1 (G1) theory to bromine-containing molecules. J Chem Phys 94(1):511–516

    Article  CAS  Google Scholar 

  60. Raghavachari K, Trucks GW (1989) Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. J Chem Phys 91(2):1062–1065

  61. Russo TV, Martin RL, Hay PJ (1994) Density functional calculations on first-row transition metals. J Chem Phys 101(9):7729–7737

    Article  CAS  Google Scholar 

  62. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13(14):6670–6688

    Article  CAS  PubMed  Google Scholar 

  63. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115(19):2315–2372

    Article  CAS  Google Scholar 

  64. Brakestad A, Jensen SR, Wind P, D’Alessandro M, Genovese L, Hopmann KH, Frediani L (2020) Static polarizabilities at the basis set limit: a benchmark of 124 species. J Chem Theory Comput 16(8):4874–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mitra H, Roy TK (2020) Comprehensive benchmark results for the accuracy of basis sets for anharmonic molecular vibrations. J Phys Chem A 124(44):9203–9221

    Article  CAS  PubMed  Google Scholar 

  66. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 19(48):32184–32215

    Article  CAS  PubMed  Google Scholar 

  67. Dennington R, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS

  68. Andrienko G (2010) Chemcraft. Graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

  69. Foster AJ, Weinhold F, (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218

    Article  Google Scholar 

  70. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78(6):4066–4073

    Article  CAS  Google Scholar 

  71. Carpenter J, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (Thoechem) 169:41–62

    Article  Google Scholar 

  72. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  73. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845

    Article  Google Scholar 

  74. Mayer I, Valiron P (1998) Second order Mo/ller–Plesset perturbation theory without basis set superposition error. J Chem Phys 109(9):3360–3373

    Article  CAS  Google Scholar 

  75. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

  76. Alkorta I, Trujillo C, Elguero J, Solimannejad M (2011) A theoretical study of the hydrogen bonding properties of H2BNH2: Some considerations on the basis set superposition error issue. Comput Theor Chem 967(1):147–151

    Article  CAS  Google Scholar 

  77. Thomas LH (1927) The calculation of atomic fields. In: Mathematical proceedings of the Cambridge philosophical society. Cambridge University Press 5:542–548

  78. Fermi E (1927) Statistical method to determine some properties of atoms. Rend Accad Naz Lincei 6(602–607):5

    Google Scholar 

  79. Dirac PA (1930) Note on exchange phenomena in the Thomas atom. In: Mathematical proceedings of the Cambridge philosophical society. Cambridge University Press 3:376–385

  80. Slater JC (1951) A simplification of the Hartree-Fock method. Phys Rev 81(3):385

    Article  CAS  Google Scholar 

  81. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Google Scholar 

  82. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Article  Google Scholar 

  83. Becke AD (2014) Perspective: Fifty years of density-functional theory in chemical physics. J Chem Phys 140(18):18A301

    Article  PubMed  Google Scholar 

  84. Burke K, Wagner LO (2013) DFT in a nutshell. Int J Quantum Chem 113(2):96–101

    Article  CAS  Google Scholar 

  85. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  86. Gill PM (1996) A new gradient-corrected exchange functional. Mol Phys 89(2):433–445

    Article  CAS  Google Scholar 

  87. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211

    Article  CAS  Google Scholar 

  88. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822

    Article  CAS  Google Scholar 

  89. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  90. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048

    Article  CAS  Google Scholar 

  91. Cole LA, Perdew J (1982) Calculated electron affinities of the elements. Phys Rev A 25(3):1265

    Article  CAS  Google Scholar 

  92. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244

    Article  CAS  Google Scholar 

  93. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107(20):8554–8560

  94. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671

    Article  CAS  Google Scholar 

  95. Paier J, Marsman M, Kresse G (2007) Why does the B3LYP hybrid functional fail for metals? J Chem Phys 127(2):024103

  96. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  97. Leininger T, Stoll H, Werner H-J, Savin A (1997) Combining long-range configuration interaction with short-range density functionals. Chem Phys Lett 275(3–4):151–160

    Article  CAS  Google Scholar 

  98. Bhatta RS, Pellicane G, Tsige M (2015) Tuning range-separated DFT functionals for accurate orbital energy modeling of conjugated molecules. Comput Theor Chem 1070:14–20

    Article  CAS  Google Scholar 

  99. Sekar N, Katariya S, Rhyman L, Alswaidan IA, Ramasami P (2019) Molecular and NLO Properties of Red Fluorescent Coumarins–DFT Computations Using Long-Range Separated and Conventional Functionals. J Fluoresc 29(1):241–253

    Article  PubMed  Google Scholar 

  100. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401

  101. PubChem database (2021) https://pubchem.ncbi.nlm.nih.gov/

  102. Kohl D (1990) The role of noble metals in the chemistry of solid-state gas sensors. Sens Actuators, B Chem 1(1–6):158–165

    Article  CAS  Google Scholar 

  103. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods: a guide to using Gaussian

  104. Mohammadi MD, Abdullah HY, Biskos G, Bhowmick S (2021) Enhancing the absorption of 1-chloro-1, 2, 2, 2-tetrafluoroethane on carbon nanotubes: an ab initio study. Bull Mater Sci 44:198

    Article  CAS  Google Scholar 

  105. Mohammadi MD, Abdullah HY, Suvitha A (2021) The Adsorption of 1-Chloro-1,2,2,2-Tetrafluoroethane Onto the Pristine, Al-, and Ga-Doped Boron Nitride Nanosheet. Iranian Journal of Science and Technology, Transactions A: Science 45:1287–1300

    Article  Google Scholar 

  106. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874

    Article  CAS  PubMed  Google Scholar 

  107. Islam N, Kaya S (2018) Conceptual density functional theory and its application in the chemical domain. CRC Press

    Book  Google Scholar 

  108. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154

    Article  CAS  Google Scholar 

  109. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117(5):369–377

    Article  CAS  Google Scholar 

  110. Ayers PW, Anderson JS, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101(5):520–534

    Article  CAS  Google Scholar 

  111. Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2013) Atomic charges and the electrostatic potential are ill-defined in degenerate ground states. J Chem Theory Comput 9(11):4779–4788

    Article  CAS  PubMed  Google Scholar 

  112. Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2014) How to compute the Fukui matrix and function for systems with (quasi-) degenerate states. J Chem Theory Comput 10(1):202–210

    Article  CAS  PubMed  Google Scholar 

  113. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807

    Article  CAS  Google Scholar 

  114. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  115. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  116. Yang W, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81(6):2862–2863

    Article  CAS  Google Scholar 

  117. Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109(1):205–212

    Article  CAS  PubMed  Google Scholar 

  118. Levy M (1982) Electron densities in search of Hamiltonians. Phys Rev A 26(3):1200

    Article  CAS  Google Scholar 

  119. Parr RG, Lv S, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  120. Bredas J-L (2014) Mind the gap! Mater Horiz 1(1):17–19

    Article  CAS  Google Scholar 

  121. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. physica 1(1–6):104–113

  122. Janak J (1978) Proof that∂ e∂ n i= ε in density-functional theory. Phys Rev B 18(12):7165

    Article  CAS  Google Scholar 

  123. Schmidt MW, Hull EA, Windus TL (2015) Valence virtual orbitals: An unambiguous ab initio quantification of the LUMO concept. J Phys Chem A 119(41):10408–10427

    Article  CAS  PubMed  Google Scholar 

  124. Mulliken RS (1932) Electronic structures of polyatomic molecules and valence. II General considerations. Phys Rev 41(1):49

    CAS  Google Scholar 

  125. Löwdin P-O (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97(6):1474

  126. Coulson CA (1939) The electronic structure of some polyenes and aromatic molecules. VII. Bonds of fractional order by the molecular orbital method. Proc R Soc Lond A Math Phys Sci 169(938):413–428

  127. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. J Chem Phys 23(10):1833–1840

    Article  CAS  Google Scholar 

  128. Mayer I (1983) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97(3):270–274

    Article  CAS  Google Scholar 

  129. Mayer I (2012) Improved definition of bond orders for correlated wave functions. Chem Phys Lett 544:83–86

    Article  CAS  Google Scholar 

  130. Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery J (2001) The Mayer bond order as a tool in inorganic chemistry. J Chem Soc, Dalton Trans 14:2095–2108

    Article  Google Scholar 

  131. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083–1096

    Article  CAS  Google Scholar 

  132. Sizova OV, Skripnikov LV, Sokolov AY (2008) Symmetry decomposition of quantum chemical bond orders. J Mol Struct (Thoechem) 870(1–3):1–9

    Article  CAS  Google Scholar 

  133. Bader RF (1985) Atoms in molecules. Acc Chem Res 18(1):9–15

    Article  CAS  Google Scholar 

  134. Bader R (1990) A quantum theory. Clarendon, Oxford

    Google Scholar 

  135. Bader RFW, Popelier PLA, Keith TA (1994) Theoretical definition of a functional group and the molecular orbital paradigm. Angew Chem, Int Ed Engl 33(6):620–631

    Article  Google Scholar 

  136. Matta CF (2006) Hydrogen–Hydrogen Bonding: The Non-Electrostatic Limit of Closed-Shell Interaction Between Two Hydro. In: Hydrogen Bonding—New Insights. Springer, pp 337–375

  137. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116(7):1838–1845

    Article  CAS  PubMed  Google Scholar 

  138. Bohórquez HJ, Boyd RJ, Matta CF (2011) Molecular model with quantum mechanical bonding information. J Phys Chem A 115(45):12991–12997

    Article  PubMed  Google Scholar 

  139. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Solid-State Theory Group at the Physics Department at the Università Degli Studi di Milano-Italy for providing computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

Mohsen Doust Mohammadi: investigation, writing—original draft. Hewa Y. Abdullah: conceptualization, writing—review and editing, resources, supervision.

Corresponding author

Correspondence to Hewa Y. Abdullah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doust Mohammadi, M., Abdullah, H.Y. Ab initio investigation for the adsorption of acrolein onto the surface of C60, C59Si, and C59Ge: NBO, QTAIM, and NCI analyses. Struct Chem 33, 363–378 (2022). https://doi.org/10.1007/s11224-021-01847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01847-2

Keywords

Navigation