Skip to main content
Log in

Manufacturing Porous Materials Using Dabco-Based Ionic Liquid

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The long-chain ionic liquid (IL) hexadecyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide was used as a template to prepare the hexagonally ordered siliceous mesoporous molecular sieve MCM-41 as well as the disordered mesoporous molecular sieve designated as KIT-1. The synthesized products were studied via X-ray diffraction (XRD), Fourier transform infrared (FTIR), N2 adsorption-desorption analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Also, the surface area (BET), pore volume, and pore diameter (BJH) are determined. These kind of ILs which have 1,4-diazabicyclo[2.2.2]octane (DABCO) in their structures, were prepared with an easy method. When the two templates, cetyltrimethylammonium bromide (CTAB) and IL, have the similar structures, MCM-41 mesoporous molecular sieve produced with more ordered, uniform mesoporous channel and high surface area in comparison to without IL. When just IL used instead of CTAB, the KIT-1 with non-uniform mesoporous was obtained. Here we prepared the KIT-1 mesoporous molecular sieve with IL without CTAB. Also, using dual template CTAB and DABCO based IL leads to increase the pore walls of products. It seems, using dual template with changing IL structures in fabricated of molecular sieve provide new opportunity to design targeted adsorbents and catalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machado SWM, Santana JC, Pedrosa AMG, Souza MJB, Coriolano ACF, Morais EKL (2018) Catalytic cracking of isopropylbenzene over hybrid HZSM-12/M41S (M41S = MCM-41 or MCM-48) micro-mesoporous materials. Pet Sci Technol 36:923–929. https://doi.org/10.1080/10916466.2018.1454950

    Article  CAS  Google Scholar 

  2. Ryoo R, Kim JM, Ko CH, Shin CH (1996) Disordered molecular sieve with branched mesoporous channel network. J Phys Chem 100:17718–17721. https://doi.org/10.1021/jp9620835

    Article  CAS  Google Scholar 

  3. Gholamzadeh P, Mohammadi Ziarani G, Badiei A (2017) Immobilization of lipases onto the SBA-15 mesoporous silica. Biocatal Biotransfor 35:131–150. https://doi.org/10.1080/10242422.2017.1308495

    Article  CAS  Google Scholar 

  4. Alothman ZAA (2012) Review: fundamental aspects of silicate mesoporous materials. Materials. 5:2874–2902. https://doi.org/10.3390/ma5122874

    Article  CAS  PubMed Central  Google Scholar 

  5. Li Z, Zhang Y, Feng N (2019) Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 16:219–237. https://doi.org/10.1080/17425247.2019.1575806

    Article  CAS  PubMed  Google Scholar 

  6. Sanaeishoar H, Sabbaghan M, Mohave F (2015) Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Micropor Mesopor Mat 217:219–224. https://doi.org/10.1016/j.micromeso.2015.06.027

    Article  CAS  Google Scholar 

  7. Liu L, Xiong G, Wang X, Cheng X (2011) Synthesis of Nanosized AlKIT-1 mesoporous molecular sieve and its catalytic performance for the conversion of 1,2,4-Trimethylbenzene. Catal Lett 141:1136–1140. https://doi.org/10.1007/s10562-011-0580-8

    Article  CAS  Google Scholar 

  8. Roto R, Kartini I, Motuzas J, Triyana K, Siswanta D, Dwi Wahyuningsih T, Kusumaatmaja A (2019) Rapid synthesis of MCM-41 from Rice husk using ultrasonic wave: Optimation of sonication time. Mater Sci Forum 948:198–205. https://doi.org/10.4028/www.scientific.net/MSF.948.198

    Article  Google Scholar 

  9. Coutino-Gonzalez E, Manriquez J, Robles I, Espejel-Ayala F (2018) Synthesis of MCM-41 material from acid mud generated in the aluminum extraction of kaolinite mineral. Enviro Prog Sustain Energy doi: 101002/ep13069

  10. Loganathan S, Kumar K, Ghoshal AK (2019) Fabrication of mesoporous silica MCM-41 via sol-gel and hydrothermal methods for amine grafting and CO2 capture application. Urban Ecology, Water Quality and Climate Change 38:341–349. https://doi.org/10.1007/978-3-319-74494-0_26

    Article  Google Scholar 

  11. Azizi SN, Ghasemi S, Rangriz-Rostami O (2018) Synthesis of MCM-41 nanoparticles from stem of common reed ash silica and their application as substrate in electrooxidation of methanol. Bull. Mater. Sci 88:1–13. https://doi.org/10.1007/s12034-018-1580-8

    Article  CAS  Google Scholar 

  12. Ryoo R, Kim JM, Shin CH, Lee JY (1997) Synthesis and hydrothermal stability of a disordered mesoporous molecular sieve. Stud Surf Sci Catal 105:45–52. https://doi.org/10.1016/S0167-2991(97)80537-X

    Article  Google Scholar 

  13. Taubert A. (2016) Inorganic nanomaterials synthesis using ionic liquids, Encyclopedia of Inorganic and Bioinorganic Chemistry, 1–14 doi: https://doi.org/10.1002/9781119951438.eibc0355.pub2

  14. Li RX (2004) Green solvents: synthesis and application of ionic liquids. Chemistry Technology Press, Beijing

    Google Scholar 

  15. Isambert N, Duque MMS, Plaquevent JC, Genisson Y, Rodriguez J, Constantieux T (2011) Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chem Soc Rev 40:1347–1357. https://doi.org/10.1039/C0CS00013B

    Article  CAS  PubMed  Google Scholar 

  16. Sanaeishoar H, Sabbaghan M, Mohave F, Nazarpour R (2016) Disordered mesoporous KIT-1 synthesized by DABCO-based ionic liquid and its characterization. Micropor. Mesopor. Mat. 228:305–309. https://doi.org/10.1016/j.micromeso.2016.04.003

    Article  CAS  Google Scholar 

  17. Barrett EP, Joyne LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  18. Yue Y, Sun Y, Gao Z (1997) Disordered mesoporous KIT-1 as a support for hydrodesulfurization catalysts. Catal Lett 47:167–171. https://doi.org/10.1023/A:1019084400340

    Article  CAS  Google Scholar 

  19. Gregg SJ, Sing KSW (11997) adsorption, Surface Area and Porosity; Academic: London

  20. Chen LJ, Xu WH, Zhang JD, Holmes MA, Morris J (2011) Syntheses of complex mesoporous silicas using mixtures of nonionic block copolymer surfactants: understanding formation of different structures using solubility parameters. Colloid Interface Sci 353:169–180. https://doi.org/10.1016/j.jcis.2010.09.043

    Article  CAS  Google Scholar 

  21. Wei J, Yue Q, Sun Z, Deng Y, Zhao D (2012) Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. Angew Chem Int Ed 51:6149–6153. https://doi.org/10.1002/anie.201202232

    Article  CAS  Google Scholar 

  22. Wali LA, Khulood KH, Alwan AM (2019) Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim Acta A Mol Biomol Spectrosc 206:31–36. https://doi.org/10.1016/j.saa.2018.07.103

    Article  CAS  PubMed  Google Scholar 

  23. Wang T, Kaper H, Antonietti M, Smarsly B (2007) Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica. Langmuir 23:1489–1495. https://doi.org/10.1021/la062470y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ahvaz Branch, Islamic Azad University for providing the essential financial support.

Availability of Data and Materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HS: Conceptualization; Methodology; Investigation; Writing. MS: Conceptualization; Visualization; Writing—review and editing and discussion. MG: Methodology and Editing MG: Synthesis SP: Synthesis; Formal analysis.

Corresponding authors

Correspondence to Haleh Sanaeishoar or Maryam Sabbaghan.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary data associated with this article can be found, in the online supplementary content.

ESM 1

(DOCX 1260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanaeishoar, H., Sabbaghan, M., Ghazvini, M. et al. Manufacturing Porous Materials Using Dabco-Based Ionic Liquid. Silicon 14, 6291–6297 (2022). https://doi.org/10.1007/s12633-021-01403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01403-x

Keywords

Navigation