Skip to main content
Log in

TCAD Temperature Analysis of Gate Stack Gate All Around (GS-GAA) FinFET for Improved RF and Wireless Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, we investigated the impact of temperature variation on DC, analog, RF, and wireless performance of Gate Stack Gate All Around (GS-GAA) FinFET using SILVACO Atlas 3D simulator. The GAA structure introduction enhances the switching ratio (Ion/Ioff) by ∼152.37% and reduces the subthreshold swing (SS) by ∼6.5%. At gate voltage (Vgs) ∼ 0.725 V, the GS-GAA FinFET device exhibits the ZTC (Zero-Temperature-Coefficient) bias point, i.e., the effect of temperature on drain current gets nullified. DC parameters such as leakage current (Ioff), on current (Ion), SS, and threshold voltage (Vth) deteriorate with the rise in temperature. The enhancement in temperature degrades the RF and analog performance of the device by suppressing the parameters like transconductance (gm), device efficiency (TGF), cut-off frequency (fT), gain frequency product (GFP), gain-bandwidth product (GBP), etc. The device’s wireless performance is analyzed using linearity and harmonic distortion parameters such as gm3, gm2, 1-dB compression point, IIP3, VIP3, VIP2, IMD3, HD3, and HD2, and it shows significant improvement as the temperature increases from 300 K to 500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar A, Gupta N, Chaujar R (2016) TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron J 49:36–42. https://doi.org/10.1016/j.mejo.2015.12.007

    Article  Google Scholar 

  2. Jeon DY, Park SJ, Mouis M, Barraud S, Kim GT, Ghibaudo G (2013) Low-temperature electrical characterization of junctionless transistors. Solid State Electron 80:135–141. https://doi.org/10.1016/j.sse.2012.10.018

    Article  CAS  Google Scholar 

  3. Doria RT, Pavanello MA, Lee CW, Ferain I, Dehdashti-Akhavan N, Yan R, Razavi P, Yu R, Kranti A, Colinge JP (2010) Analog operation and harmonic distortion temperature dependence of nMOS Junctionless transistors. ECS Trans 31(1):13–20. https://doi.org/10.1149/1.3474137

    Article  CAS  Google Scholar 

  4. Hisamoto D, Lee WC, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King TJ, Bokor J, Hu C (2000) FinFET—A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47(12):2320–2325. https://doi.org/10.1109/16.887014

    Article  CAS  Google Scholar 

  5. Huang YC, Chiang MH, Wang SJ, Fossum JG (2017) GAAFET versus pragmatic FinFET at the 5nm Si-based CMOS technology node. IEEE J Electron Devices Soc 5(3):164–169. https://doi.org/10.1109/JEDS.2017.2689738

    Article  Google Scholar 

  6. The International Technology Roadmap for Semiconductors 2.0 (2015) Itrpv, 2015 [Online]. Available: http://www.itrs2.net/

  7. Lo SH, Buchanan DA, Taur Y, Wang W (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett 18(5):209–211. https://doi.org/10.1109/55.568766

    Article  CAS  Google Scholar 

  8. Ribes G, Mitard J, Denais M, Bruyere S, Monsieur F, Parthasarathy C, Vincent E, Ghibaudo G (2005) Review on high-k dielectrics reliability issues. IEEE Trans Device Mater Reliab 5(1):5–19. https://doi.org/10.1109/TDMR.2005.845236

    Article  CAS  Google Scholar 

  9. Gupta N, Kumar A (2020) Assessment of High-k Gate Stack on Sub-10 nm SOI-FinFET for High-Performance Analog and RF Applications Perspective. ECS J Solid State Sci Technol 9(12):123009. https://doi.org/10.1149/2162-8777/abcf14

    Article  CAS  Google Scholar 

  10. Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28:265–291. https://doi.org/10.1051/epjap:2004206

    Article  CAS  Google Scholar 

  11. Onishi K, Kang CS, Choi R, Cho HJ, Gopalan S, Nieh RE, Krishnan SA, Lee JC (2003) Improvement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing. IEEE Trans Electron Devices 50(2):384–390. https://doi.org/10.1109/TED.2002.807447

    Article  CAS  Google Scholar 

  12. Kerber A, Cartier E, Pantisano L, Degraeve R, Kauerauf T, Kim Y, Hou A, Groeseneken G, Maes HE, Schwalke U (2003) Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics. IEEE Electron Device Lett 24(2):87–89. https://doi.org/10.1109/LED.2003.808844

    Article  CAS  Google Scholar 

  13. Gupta N, Chaujar R (2016) Optimization of high-k and gate metal work function for improved analog and intermodulation performance of gate stack (GS)-GEWE-SiNW MOSFET. Superlattice Microst 97:630–641. https://doi.org/10.1016/j.spmi.2016.07.021

    Article  CAS  Google Scholar 

  14. Mohapatra SK, Pradhan KP, Singh D, Sahu PK (2015) The role of geometry parameters and fin aspect ratio of sub-20nm SOI-FinFET: an analysis towards analog and RF circuit design. IEEE Trans Nanotechnol 14(3):546–554. https://doi.org/10.1109/TNANO.2015.2415555

    Article  CAS  Google Scholar 

  15. Madan J, Chaujar R (2018) Temperature associated reliability issues of heterogeneous gate dielectric-gate all around-tunnel FET. IEEE Trans Nanotechnol 17(1):41–48. https://doi.org/10.1109/TNANO.2017.2650209

    Article  CAS  Google Scholar 

  16. Dutta A, Koley K, Saha SK, Sarkar CK (2016) Impact of temperature on linearity and harmonic distortion characteristics of underlapped FinFET. Microelectron Reliab 61:99–105. https://doi.org/10.1016/j.microrel.2016.01.017

    Article  CAS  Google Scholar 

  17. Kumar A, Gupta N, Chaujar R (2020) Reliability of Sub-20 nm black phosphorus trench (BP-T) MOSFET in high-temperature harsh environment. Silicon:1–7. https://doi.org/10.1007/s12633-020-00531-0

  18. Akarvardar K, Mercha A, Simoen E, Subramanian V, Claeys C, Gentil P, Cristoloveana S (2007) High-temperature performance of state-of-the-art triple-gate transistors. Microelectron Reliab 47(12):2065–2069. https://doi.org/10.1016/j.microrel.2006.10.002

    Article  Google Scholar 

  19. Groeseneken G, Colinge JP, Maes HE, Alderman JC, Holt S (1990) Temperature dependence of threshold voltage in thin-film SOI MOSFET’s. IEEE Electron Device Lett 11(8):329–331. https://doi.org/10.1109/55.57923

    Article  Google Scholar 

  20. Das RR, Maity S, Muchahary D, Bhunia CT (2017) Temperature dependent study of fin-FET drain current through optimization of controlling gate parameters and dielectric material. Superlattice Microst 103:262–269. https://doi.org/10.1016/j.spmi.2017.01.041

    Article  CAS  Google Scholar 

  21. Saha R, Goswami R, Bhowmick B, Baishya S (2020) Dependence of RF/analog and linearity figure of merits on temperature in ferroelectric FinFET: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 3010(c):1–6. https://doi.org/10.1109/TUFFC.2020.2999518

    Article  Google Scholar 

  22. Bhattacharya D, Jha NK (2014) FinFETs: from devices to architectures. Adv Electron 2014:21–55. https://doi.org/10.1155/2014/365689

    Article  Google Scholar 

  23. Kumar B, Kumar A, Chaujar R (2020) The Effect of Gate Stack and High-K Spacer on Device Performance of a Junctionless GAA FinFET. In IEEE VLSI Device, Circuit and System Conference (VLSI-DCS), pp 159–163. https://doi.org/10.1109/VLSIDCS47293.2020.9179855

  24. Biswas K, Sarkar CK (2018) Optimizing Fin aspect ratio of junctionless bulk FinFET for application in Analog/RF circuit, in 2018 IEEE Electron Devices Kolkata Conference (EDKCON), pp 591–595. https://doi.org/10.1109/EDKCON.2018.8770515

  25. Liu Y, Kijima S, Sugimata E, Masahara M, Endo K, Matasukawa T, Ishii K, Sakamoto K, Sekigawa T, Yamauchi H, Takanashi Y, Suzuki E (2006) Investigation of the TiN gate electrode with tunable work function and its application for FinFET fabrication. IEEE Trans Nanotechnol 5(6):723–728. https://doi.org/10.1109/TNANO.2006.885035

    Article  Google Scholar 

  26. Vitale SA, Kedzierski J, Healey P, Wyatt PW, Keast CL (2011) Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation. IEEE Trans Electron Devices 58(2):419–426. https://doi.org/10.1109/TED.2010.2092779

    Article  CAS  Google Scholar 

  27. ATLAS (2016) User’s manual. SILVACO International, Santa Clara

    Google Scholar 

  28. Arora ND, Hauser JR, Roulston DJ (1982) Electron and hole Mobilities in silicon as a function of concentration and temperature. IEEE Trans Electron Devices 29(2):292–295. https://doi.org/10.1109/T-ED.1982.20698

    Article  Google Scholar 

  29. Gupta N, Kumar A, Chaujar R (2015) Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J Comput Electron 14(3):798–810. https://doi.org/10.1007/s10825-015-0715-z

    Article  CAS  Google Scholar 

  30. Lee H, Yu LE, Ryu SW, Han JW, Jeon K, Jang DY, Kim KH, Lee J, Kim JH, Jeon SC, Oh JS, Park YC, Bae WH, Lee HM, Yang JM, Yoo JJ, Kim SI, Choi YK (2006) Sub-5nm all-around gate FinFET for ultimate scaling. Digest Tech Papers-Sympos VLSI Technol 25(9):58–59. https://doi.org/10.1109/VLSIT.2006.1705215

    Article  Google Scholar 

  31. Lee CW, Borne A, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP (2010) High-temperature performance of silicon junctionless MOSFETs. IEEE Trans Electron Devices 57(3):620–625. https://doi.org/10.1109/TED.2009.2039093

    Article  CAS  Google Scholar 

  32. Osman AA, Osman MA, Dogan NS, Imam MA (1995) Zero-temperature-coefficient biasing point of partially depleted SOI MOSFET’s. IEEE Trans Electron Devices 42(9):1709–1711. https://doi.org/10.1109/16.405293

    Article  Google Scholar 

  33. Barman KR, Baishya S (2020) Study of temperature effect on analog/RF and linearity performance of dual material gate (DMG) vertical super-thin body (VSTB) FET. Silicon. https://doi.org/10.1007/s12633-020-00561-8

  34. Saha R, Bhowmick B, Baishya S (2018) Temperature effect on RF/analog and linearity parameters in DMG FinFET. Appl Phys A Mater Sci Process 124(9):1–10. https://doi.org/10.1007/s00339-018-2068-5

    Article  CAS  Google Scholar 

  35. Sahu PK, Mohapatra SK, Pradhan KP (2014) Impact of downscaling on analog/RF performance of sub-100nm GS-DG MOSFET. Inf MIDEM 44(2):119–125

    Google Scholar 

  36. Madan J, Chaujar R (2016) Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: a solution for suppressed ambipolarity and enhanced ON state behaviour. Appl Phys A Mater Sci Process 122(11):973. https://doi.org/10.1007/s00339-016-0510-0

    Article  CAS  Google Scholar 

  37. Malik P, Gupta RS, Chaujar R, Gupta M (2012) AC analysis of nanoscale GME-TRC MOSFET for microwave and RF applications. Microelectron Reliab 52(1):151–158. https://doi.org/10.1016/j.microrel.2011.07.070

    Article  CAS  Google Scholar 

  38. Pradhan KP, Mohapatra SK, Sahu PK, Behera DK (2014) Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron J 45(2):144–151. https://doi.org/10.1016/j.mejo.2013.11.016

    Article  CAS  Google Scholar 

  39. Kumar B, Chaujar R (2021) Analog and RF performance evaluation of Junctionless accumulation mode (JAM) gate stack gate all around (GS-GAA) FinFET. Silicon. https://doi.org/10.1007/s12633-020-00910-7

  40. Kumar A, Tripathi MM, Chaujar R (2017) Investigation of parasitic capacitances of In2O5Sn gate electrode recessed channel MOSFET for ULSI switching applications. Microsyst Technol 23(12):5867–5874. https://doi.org/10.1007/s00542-017-3348-2

    Article  CAS  Google Scholar 

  41. Kumar SP, Agrawal A, Chaujar R, Gupta RS, Gupta M (2011) Device linearity and intermodulation distortion comparison of dual material gate and conventional AlGaN/GaN high electron mobility transistor. Microelectron Reliab 51(3):587–596. https://doi.org/10.1016/j.microrel.2010.09.033

    Article  CAS  Google Scholar 

  42. Ghosh P, Haldar S, Gupta RS, Gupta MG (2012) An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans Electron Devices 59(12):3263–3268. https://doi.org/10.1109/TED.2012.2219537

    Article  Google Scholar 

  43. Kumar A, Gupta N, Tripathi SK, Tripathi MM, Chaujar R (2020) Performance evaluation of linearity and intermodulation distortion of nanoscale GaN-SOI FinFET for RFIC design. AEU - Int J Electron Commun 115:153052. https://doi.org/10.1016/j.aeue.2019.153052

    Article  Google Scholar 

  44. Gupta N, Chaujar R (2016) Investigation of temperature variations on analog/RF and linearity performance of stacked gate GEWE-SiNW MOSFET for improved device reliability. Microelectron Reliab 64:235–241. https://doi.org/10.1016/j.microrel.2016.07.095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Microelectronics Research Laboratory, Delhi Technological University, for assisting this research work.

Availability of Data & Material

The authors mentioned above have all the relevant data associated with this research work and will be dedicated to sharing that they will be asked to do so in the future.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Rishu Chaujar.

Ethics declarations

The authors have seen all the Ethical Standards and will supposed to follow them in the future.

Consent to Participate & for Publication

Since the concerned research paper is based on the ‘non-life science journal.’ So, ‘Not Applicable’ here.

However, the authors have gone through all journal policies and consent the authorities for further processing.

Conflict of Interests

The authors declare that they have no known conflict of interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Chaujar, R. TCAD Temperature Analysis of Gate Stack Gate All Around (GS-GAA) FinFET for Improved RF and Wireless Performance. Silicon 13, 3741–3753 (2021). https://doi.org/10.1007/s12633-021-01040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01040-4

Keywords

Navigation