Skip to main content
Log in

Structural, Morphological, and Optical Characterization of MoO3 Thin Films and MoO3/p-Si Based Diode

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The molybdenum trioxide (MoO3) that was prepared by the solvothermal method was successfully deposited by using the conventional thermal evaporation technique. XRD and optical properties were studied as a function of annealing temperatures. The crystallization was enhanced and the defects were decreased with increasing the annealing temperature. The films showed an increase of optical energy gap and the refractive index with increasing of annealing temperature due to partial filling of oxygen vacancies and so an increase of the degree of crystallinity. Current versus voltage (I-V) characteristics of Au/MoO3/p-Si/Al junction were studied in darkness and at different temperatures. The junction ideality factor shows an enhancement with increasing measurement temperature in contrast with the barrier height. The device series resistance decreases with increasing measurement temperature. The space charge limited current dominated by the exponential trap of distribution is the governing conduction mechanism at a high forward potential region (V > 0.25).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Nahrawy AM, Mansour AM, Abou Hammad AB, Wassel AR (2019) Effect of cu incorporation on morphology and optical band gap properties of nano-porous lithium magneso-silicate (LMS) thin films. Mater Res Express 6. https://doi.org/10.1088/2053-1591/aae343

  2. El Nahrawy AM, Abou Hammad AB, Youssef AM et al (2019) Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO:cu nanocomposites. Appl Phys A Mater Sci Process 125. https://doi.org/10.1007/s00339-018-2351-5

  3. Zhou J, Deng SZ, Xu NS, Chen J, She JC (2003) Synthesis and field-emission properties of aligned MoO3 nanowires. Appl Phys Lett 83:2653–2655. https://doi.org/10.1063/1.1613992

    Article  CAS  Google Scholar 

  4. Rasool A, Amiruddin R, Mohamed IR, Kumar MCS (2020) Fabrication and characterization of resistive random access memory (ReRAM) devices using molybdenum trioxide (MoO3) as switching layer. Superlattice Microst 147:106682. https://doi.org/10.1016/j.spmi.2020.106682

    Article  CAS  Google Scholar 

  5. Scirè D, Procel P, Gulino A, Isabella O, Zeman M, Crupi I (2020) Sub-gap defect density characterization of molybdenum oxide: an annealing study for solar cell applications. Nano Res 13:3416–3424. https://doi.org/10.1007/s12274-020-3029-9

    Article  CAS  Google Scholar 

  6. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151. https://doi.org/10.1038/nmat2612

    Article  CAS  PubMed  Google Scholar 

  7. Bhosle V, Tiwari A, Narayan J (2005) Epitaxial growth and properties of MoO x (2<x<2.75) films. J Appl Phys 97:083539. https://doi.org/10.1063/1.1868852

    Article  CAS  Google Scholar 

  8. Lei Z, Yang X, Dong J, Yi X (2009) Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem Mater 21:5681–5690. https://doi.org/10.1021/cm9023887

    Article  CAS  Google Scholar 

  9. Greiner MT, Chai L, Helander MG, Tang WM, Lu ZH (2013) Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3. Adv Funct Mater 23:215–226. https://doi.org/10.1002/adfm.201200993

    Article  CAS  Google Scholar 

  10. Zhao C, Liang Z, Su M, Liu P, Mai W, Xie W (2015) Self-powered, high-speed and visible-near infrared response of MoO3-x/n-Si Heterojunction Photodetector with enhanced performance by interfacial engineering. ACS Appl Mater Interfaces 7:25981–25990. https://doi.org/10.1021/acsami.5b09492

    Article  CAS  PubMed  Google Scholar 

  11. Battaglia C, Yin X, Zheng M, Sharp ID, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace RM, Javey A (2014) Hole selective MoOx contact for silicon solar cells. Nano Lett 14:967–971. https://doi.org/10.1021/nl404389u

    Article  CAS  PubMed  Google Scholar 

  12. Bullock J, Yan D, Cuevas A et al (2015) N- and p-typesilicon solar cells with molybdenum oxide hole contacts, Energy Procedia. Elsevier Ltd, pp 446–450

  13. Tokito S, Noda K, Taga Y (1996) Metal oxides as a hole-injecting layer for an organic electroluminescent device. J Phys D Appl Phys 29:2750–2753. https://doi.org/10.1088/0022-3727/29/11/004

    Article  CAS  Google Scholar 

  14. You H, Dai Y, Zhang Z, Ma D (2007) Improved performances of organic light-emitting diodes with metal oxide as anode buffer. J Appl Phys 101:026105. https://doi.org/10.1063/1.2430511

    Article  CAS  Google Scholar 

  15. Geissbühler J, Werner J, Martin De Nicolas S et al (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl Phys Lett 107:081601. https://doi.org/10.1063/1.4928747

    Article  CAS  Google Scholar 

  16. Park W-H, Joondong K, Choi I-H (2017) MoO3/p-Si Heterojunction for infrared Photodetector. J Korean Inst Electr Electron Mater Eng 30:525–529. https://doi.org/10.4313/JKEM.2017.30.8.525

    Article  Google Scholar 

  17. Park W-H, Kim J, Choi I-H (2017) MoO 3 /p-Si Heterojunction for infrared Photodetector. J Korean Inst Electr Electron Mater Eng 30:525–529. https://doi.org/10.4313/JKEM.2017.30.8.525

  18. Zhang Z, Liao Q, Yu Y, Wang X, Zhang Y (2014) Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 9:237–244. https://doi.org/10.1016/j.nanoen.2014.07.019

    Article  CAS  Google Scholar 

  19. Zhan Y, Liu Y, Liu Q, Liu Z, Yang H, Lei B, Zhuang J, Hu C (2018) Size-controlled synthesis of fluorescent tungsten oxide quantum dots via one-pot ethanol-thermal strategy for ferric ions detection and bioimaging. Sensors Actuators B Chem 255:290–298. https://doi.org/10.1016/j.snb.2017.08.043

    Article  CAS  Google Scholar 

  20. Gan YX, Jayatissa AH, Yu Z, Chen X, Li M (2020) Hydrothermal synthesis of Nanomaterials. J Nanomater 2020:1–3. https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  21. Feng SH, Li GH (2017) Hydrothermal and Solvothermal syntheses. In: modern inorganic synthetic chemistry2nd edn. Elsevier Inc., pp 73–104

  22. Nasr M, El Radaf IM, Mansour AM (2018) Current transport and capacitance–voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique. J Phys Chem Solids 115:283–288. https://doi.org/10.1016/j.jpcs.2017.12.029

    Article  CAS  Google Scholar 

  23. Mrabet C, Ben Amor M, Boukhachem A, Amlouk M, Manoubi T (2016) Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram Int 42:5963–5978. https://doi.org/10.1016/j.ceramint.2015.12.144

    Article  CAS  Google Scholar 

  24. Begum A, Hussain A, Rahman A (2012) Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J Nanotechnol 3:438–443. https://doi.org/10.3762/bjnano.3.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gad SA (2015) Optical and electrical properties of In1−xMnxSe thin films. Appl Phys A Mater Sci Process 120:349–355. https://doi.org/10.1007/s00339-015-9194-0

    Article  CAS  Google Scholar 

  26. Gad SA, Shaban H, Mansour BA, Mahmoud GM (2020) Determination and analysis of linear and nonlinear optical properties and electrical conductivity of amorphous PbxGe42−xSe48Te10 thin films. Appl Phys A Mater Sci Process 126:1–8. https://doi.org/10.1007/s00339-020-3449-0

    Article  CAS  Google Scholar 

  27. Yahaya M, Salleh MM, Talib IA (1998) Optical properties of MoO3 thin films for electrochromic windows. Solid State Ionics 113–115:421–423. https://doi.org/10.1016/s0167-2738(98)00306-3

    Article  Google Scholar 

  28. Julien C, Nazri GA, Guesdon JP et al (1994) Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries. Solid State Ionics 73:319–326. https://doi.org/10.1016/0167-2738(94)90050-7

    Article  CAS  Google Scholar 

  29. Julien C, Mohammad Hussain O, El-Farh L, Balkanski M (1992) Electrochemical studies of lithium insertion in MoO3 films. Solid State Ionics 53–56:400–404. https://doi.org/10.1016/0167-2738(92)90406-F

    Article  Google Scholar 

  30. Gad SA, Moustafa AM (2016) Effect of annealing temperature on the structural and optical properties and effect of thickness on the electrical properties of phosphorus doped CdTe. J Inorg Organomet Polym Mater 26:147–153. https://doi.org/10.1007/s10904-015-0294-2

    Article  CAS  Google Scholar 

  31. Hervé PJL, Vandamme LKJ (1995) Empirical temperature dependence of the refractive index of semiconductors. J Appl Phys 77:5476–5477. https://doi.org/10.1063/1.359248

    Article  Google Scholar 

  32. Sharma P, Sharma V, Katyal SC (2007) Variation of optical constants in Ge10Se60Te 30 thin film. J Optoelectron Adv Mater 9:2000–2004

    CAS  Google Scholar 

  33. Farag AAM, Yahia IS (2010) Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Opt Commun 283:4310–4317. https://doi.org/10.1016/j.optcom.2010.06.081

    Article  CAS  Google Scholar 

  34. Gad SA, Mahmoud GM, Abdel Moez A (2019) Tunable non-linear optical, semiconducting and dielectric properties of In1−xMnxSe thin films. J Electron Mater 48:5176–5183. https://doi.org/10.1007/s11664-019-07331-2

    Article  CAS  Google Scholar 

  35. Das VD, Mallik RC (2002) Study of scattering of charge carriers in thin films of (Bi0.25Sb0.75)2Te3 alloy with 2% excess Te. Mater Res Bull 37:1961–1971. https://doi.org/10.1016/S0025-5408(02)00810-3

    Article  CAS  Google Scholar 

  36. Wemple SH, Didomenico M (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23:1156–1160. https://doi.org/10.1103/PhysRevLett.23.1156

    Article  CAS  Google Scholar 

  37. Sagapariya K, Gadani K, Rathod KN, Joshi Z, Boricha H, Dhruv D, Keshvani MJ, Rajyaguru B, Kansara SB, Joshi AD, Asokan K, Solanki PS, Shah NA (2019) Charge transport in chemically grown manganite based heterostructure. Mater Chem Phys 224:229–237. https://doi.org/10.1016/j.matchemphys.2018.12.020

    Article  CAS  Google Scholar 

  38. Okutan M, San SE, Köysal O, Yakuphanoglu F (2005) Investigation of refractive index dispersion and electrical properties in carbon nano-balls’ doped nematic liquid crystals. Phys B Condens Matter 362:180–186. https://doi.org/10.1016/j.physb.2005.02.009

    Article  CAS  Google Scholar 

  39. Farag AAM, Soliman HS, Atta AA (2012) Analysis of dark and photovoltaic characteristics of au/Pyronine G(Y)/p-Si/Al heterojunction. Synth Met 161:2759–2764. https://doi.org/10.1016/j.synthmet.2011.10.017

    Article  CAS  Google Scholar 

  40. Mansour AM, Abou Hammad AB, El Nahrawy AM (2021) Sol–gel synthesis and physical characterization of novel MgCrO4-MgCu2O3 layered films and MgCrO4-MgCu2O3/p-Si based photodiode. Nano-Structures and Nano-Objects 25. https://doi.org/10.1016/j.nanoso.2020.100646

  41. Farag AAM, Terra FS, Mahmoud GM, Mansour AM (2009) Study of Gaussian distribution of inhomogeneous barrier height for n-InSb/p-GaAs heterojunction prepared by flash evaporation. J Alloys Compd 481:427–433. https://doi.org/10.1016/j.jallcom.2009.03.004

    Article  CAS  Google Scholar 

  42. Mansour AM (2019) Fabrication and characterization of a photodiode based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP). Silicon 11:1989–1996. https://doi.org/10.1007/s12633-018-0016-9

    Article  CAS  Google Scholar 

  43. Farag AAM, Terra FS, Fahim GMM, Mansour AM (2012) Current transport and capacitance-voltage characteristics of n-InSb/p-GaP prepared by flash evaporation and liquid phase epitaxy. Met Mater Int 18:509–515. https://doi.org/10.1007/s12540-012-3020-4

    Article  CAS  Google Scholar 

  44. Farag AAM, Terra FS, Ashery A et al (2018) Temperature dependence of J-V and C-V characteristics of n-InAs/p-GaAs heterojunctions prepared by flash evaporation technique and liquid phase epitaxy. Indian J Pure Appl Phys 56:203–209 http://op.niscair.res.in/index.php/IJPAP/article/view/10627/465464659

    Google Scholar 

  45. Gullu HH, Yildiz DE (2019) Analysis of forward and reverse biased current–voltage characteristics of Al/Al2O3/n-Si Schottky diode with atomic layer deposited Al2O3 thin film interlayer. J Mater Sci Mater Electron 30:19383–19393. https://doi.org/10.1007/s10854-019-02300-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was not financially supported, and the National Research Centre of Egypt facilitates the work and the characterization tools.

Availability of Data and Materials

Not available.

Funding

The authors declare that this article has not any supported and the authors completely supported their article.

Author information

Authors and Affiliations

Authors

Contributions

A. M. Mansour: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools, or data; Wrote the paper. S. A. Gad, A.M. Mostafa, G. M. Mahmoud: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools, or data, Wrote the paper. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to A. M. Mansour.

Ethics declarations

Authors confirm their compliance with ethical standards.

Consent to Participate

Authors confirm their participation.

Consent for Publication

The authors confirm their acceptance for Publication.

Conflict of Interest

The authors announce that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, A.M., Gad, S.A., Moustafa, A.M. et al. Structural, Morphological, and Optical Characterization of MoO3 Thin Films and MoO3/p-Si Based Diode. Silicon 14, 2189–2199 (2022). https://doi.org/10.1007/s12633-021-01014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01014-6

Keywords

Navigation