Skip to main content
Log in

The Effect of Local Metakaolin Developed from Natural Material Soorh on Selected Properties of Concrete/Mortar

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research study the effect local metakaolin produced from natural material Soorh of Thatta, District of Sindh, Pakistan on compressive strength of mortar/concrete, permeability, corrosion potential and carbonation depth of concrete, alkali silica reaction (ASR) and sulphate attack of mortar is investigated. However, the natural material Soorh is calcined by an electric furnace at 800 °C for 2 h duration to produce metakaolin. Moreover, two mixes of mortar/concrete without accumulation of developed metakaolin were made and ten mixes of mortar/concrete were prepared where cement is replaced by developed metakaolin as 5% to 25%, with 5% increment, by weight of cement. It was concluded upon the results of this research that the utilization of 15% metakaolin as cementitious ingredient has significantly improvement in properties of mortar/concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used in this study will be made available upon the request.

References

  1. Sabir B, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23(6):441–454

    Article  CAS  Google Scholar 

  2. Portland cement association (PCA) report. Global cement consumption on the rise. Published on 3 June 2015

  3. Rashad AM, Zeedan SR (2011) The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater 25(7):3098–3107

    Article  Google Scholar 

  4. Scrivener KL, Kirkpatrick RJ (2008) Innovation in use and research on cementitious material. Cem Concr Res 38(2):128–136

    Article  CAS  Google Scholar 

  5. Park S-S, Kang H-Y (2008) Characterization of fly ash-pastes synthesized at different activator conditions. Korean J Chem Eng 25(1):78–83

    Article  CAS  Google Scholar 

  6. Samet B, Mnif T, Chaabouni M (2007) Use of a kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cem Concr Compos 29(10):741–749

    Article  CAS  Google Scholar 

  7. Habert G, Choupay N, Montel J-M, Guillaume D, Escadeillas G (2008) Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cem Concr Res 38(7):963–975

    Article  CAS  Google Scholar 

  8. Habert G, Choupay N, Escadeillas G, Guillaume D, Montel JM (2009) Clay content of argillites: influence on cement based mortars. Appl Clay Sci 43(3):322–330

    Article  CAS  Google Scholar 

  9. Janotka I, Puertas F, Palacios M, Kuliffayová M, Varga C (2010) Metakaolin sand–blendedcement pastes: rheology, hydration process and mechanical properties. Constr Build Mater 24(5):791–802

    Article  Google Scholar 

  10. Morsy MS, Shebl SS (2007) Effect of silica fume and metakaoline pozzolana on the performance of blended cement pastes against fire. Ceramics Silikaty 51(1):40

    CAS  Google Scholar 

  11. Duda WH (1977) Manual tecnológico del Cemento. Reverte

  12. Shvarzman A, Kovler K, Grader GS, Shter GE (2003) The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res 33(3):405–416

    Article  CAS  Google Scholar 

  13. Tironi A, Trezza MA, Scian AN, Irassar EF (2012) Kaolinitic calcined clays: factors affecting its performance as pozzolans. Constr Build Mater 28(1):276–281

    Article  Google Scholar 

  14. Xu C, Li H, Dong B, Yang X (2020) Chlorine immobilization and performances of cement paste/mortar with CS-Hs-PCE and calcium chloride. Constr Build Mater 262:120694

    Article  CAS  Google Scholar 

  15. Liu Y, Chen B, Qin Z, Pen D, Haque MA (2020) Experimental research on properties and microstructures of magnesium-iron phosphate cement. Constr Build Mater 257:119570

    Article  CAS  Google Scholar 

  16. Ramezanianpour A, Jovein HB (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr Build Mater 30:470–479

    Article  Google Scholar 

  17. Poon C-S, Kou S, Lam L (2006) Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr Build Mater 20(10):858–865

    Article  Google Scholar 

  18. Guneyisi H, Gesoğlu M, Karaoğlu S, Mermerdas K (2012) Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr Build Mater 34:120–130

    Article  Google Scholar 

  19. Kim H-S, Lee S-H, Moon H-Y (2007) Strength properties and durability aspects of high strength concrete using Korean metakaolin. Constr Build Mater 21(6):1229–1237

    Article  Google Scholar 

  20. Khatib J, Hibbert J (2005) Selected engineering properties of concrete incorporating slag and metakaolin. Constr Build Mater 19(6):460–472

    Article  Google Scholar 

  21. Mermerdaş K, Gesoğlu M, Güneyisi E, Özturan T (2012) Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Constr Build Mater 37:766–774

    Article  Google Scholar 

  22. Duan P, Shui Z, Chen W, Shen C (2013) Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr Build Mater 44:1–6

    Article  CAS  Google Scholar 

  23. Parande AK, Babu BR, Karthik MA, Kumaar KD, Palaniswamy N (2008) Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr Build Mater 22(3):127–134

    Article  Google Scholar 

  24. Wong H, Razak HA (2005) Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance. Cem Concr Res 35(4):696–702

    Article  CAS  Google Scholar 

  25. Saand A, Keerio MA, Bangwar DK, Samo MK (2016 Dec 1) Development of Metakaolin as a Pozzolanic material from local natural material, Soorh. Arab J Sci Eng 41(12):4937–4944

    Article  CAS  Google Scholar 

  26. ASTM (American Society for Testing and materials): C109/109M: Standard test methods for compressive strength of Hydraulic Cement mortars. Annual Book of ASTM Standards, USA (2001)

  27. ASTM C1260–14, standard test method for potential alkali reactivity of aggregates (mortar-Bar method), ASTM International, West Conshohocken, PA, 2014

  28. ASTM C1012 / C1012M-18b, standard test method for length change of hydraulic-cement mortars exposed to a Sulfate solution, ASTM International, West Conshohocken, PA, 2018

  29. ASTM (2018) C39 / C39M-18, standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA

    Google Scholar 

  30. ASTM C876–15, standard test method for corrosion potentials of uncoated reinforcing steel in concrete, ASTM International, West Conshohocken, PA, 2015

  31. British Standard Institution, (2009). Testing hardened concrete: Part 8: Depth of penetration of water under pressure. London BS EN 12390–8

  32. Wild S, Khatib J, Jones A (1996) Relative strength, Pozzolanic activity and cement hydration in Superplasticised Metakaolin concrete. Cem Concr Res 26(10):1537–1544

    Article  CAS  Google Scholar 

  33. Tironi A et al., (2013) Assessment of Pozzolanic activity of different Calcined clays cement and concrete composites, V.37, p. 319–327

  34. He C, Osbæck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25:1691–1702

    Article  CAS  Google Scholar 

  35. Hollanders S, Adriaens R, Skibsted J, Cizer Ö, Elsen J (2016) Pozzolanic reactivity of pure calcined clays. Appl Clay Sci 132–133:552–560

    Article  Google Scholar 

  36. He C, Makovicky E, Osbæck B (1995) Thermal stability and pozzolanic activity of calcined illite. Appl Clay Sci 9:337–354

    Article  CAS  Google Scholar 

  37. He C, Makovicky E, Osbæck B (1996) Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Appl Clay Sci 10:351–368

    Article  CAS  Google Scholar 

  38. Garg N, Skibsted J (2014) Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. J Phys Chem C 118:11464–11477

    Article  CAS  Google Scholar 

  39. Garg N, Skibsted J (2016) Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem Concr Res 79:101–111

    Article  CAS  Google Scholar 

  40. Ding Z, Zhang D, Yu R (1999) "High strength composite cement" China Building & Material Science Technology, V.1, p. 14–17

  41. Duan P, Shui Z, Chen W, Shen C (2012) Influence of metakaolin on pore structure-related properties and thermodynamic stability of hydrate phases of concrete in seawater environment. Constr Build Mater 36:947–953

    Article  Google Scholar 

  42. Ramlochan T, Thomas M, Gruber KA (2000 Mar 31) The effect of metakaolin on alkali–silica reaction in concrete. Cem Concr Res 30(3):339–344

    Article  CAS  Google Scholar 

  43. Khatib JM, Wild S (1998 Jan 31) Sulphate resistance of metakaolin mortar. Cem Concr Res 28(1):83–92

    Article  CAS  Google Scholar 

  44. Courard L, Darimont A, Schouterden M, Ferauche F, Willem X, Degeimbre R (2003 Sep 30) Durability of mortars modified with metakaolin. Cem Concr Res 33(9):1473–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for Quid-e-Awam University of Engineering, Science and Technology Nawabshah for providing necessary instruments to carry out experimental work.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the conception, design of the work, acquisition, analysis, interpretation of data and writing/revision of the article.

Corresponding author

Correspondence to Manthar Ali Keerio.

Ethics declarations

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerio, M.A., Saand, A., Chaudhry, R. et al. The Effect of Local Metakaolin Developed from Natural Material Soorh on Selected Properties of Concrete/Mortar. Silicon 14, 1807–1816 (2022). https://doi.org/10.1007/s12633-021-00993-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-00993-w

Keywords

Navigation