Skip to main content
Log in

Design and Analysis of Aluminum-Silicon-Graphene Based Plasmonic Device for Biosensing Applications in the Optical Communication Band

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work utilizes the modified Attenuated Total Reflection (ATR) configuration, to detect minute refractive index changes near the sensing surface. In the proposed ATR configuration, the presence of the graphene layer increases the interaction with bio-analyte by adsorbing the biomolecules and the presence of a thin silicon layer helps to enhance the sensitivity of the proposed device. The use of aluminum as the plasmonic metal serves an economical value as well as compatibility with the optoelectronic devices. All the geometrical parameters of the layers over the base index prism are engineered for maximum sensitivity and narrow linewidth in the optical communication band using the transfer matrix method. The stacking of silicon-graphene layers over the thin metal-coated glass prism leads to the maximum sensitivity of 200°/RIU and figure of merit of 95.23 RIU−1 at the wavelength of 1550 nm. To demonstrate the proposed device as a bio-sensor, rodent urine is considered as the analyte under test to detect the changes in the varying concentration of Leptospira bacterium. The proposed plasmonic device opens a new window for the detection of biomolecular interactions in the optical communication band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The dataset generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Khansili N, Rattu G, Krishna PM (2018) Label-free optical biosensors for food and biological sensor applications. Sensors Actuators: B Chem 265:35–49

    Article  CAS  Google Scholar 

  2. Arora P, Krishnan A (2015) Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing. J Appl Phys 118(23):233105

    Article  CAS  Google Scholar 

  3. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Fan W, Zhang T, Chaojun T, Xingyu C, JingJing W, Danyang L, Ying Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25(4):3675–3681

    Article  PubMed  Google Scholar 

  5. Ahmadivand A, Gerislioglu B, Ahuja R, Mishra YK (2020) Terahertz plasmonics: the rise of toroidal metadevices towards immunobiosensings. Mater Today 32:108–130

    Article  CAS  Google Scholar 

  6. Saber MG, Xu L, Sagor RH, Wang Y, Kumar A, Mao D, El-Fiky E, Patel D, Samani A, Xing Z, Jacques M, Mello YD, Plant DV (2020) Integrated polarisation handling devices. IET Optoelectron 14(3):109–119

    Article  Google Scholar 

  7. Saber MG, Abadia N, Plant DV (2018) CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide. Opt Express 26(16):20878–20887

    Article  CAS  PubMed  Google Scholar 

  8. Arora P, Talker E, Mazurski N, Levy U (2018) Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing. Sci Rep 8(1):1–9

    Article  Google Scholar 

  9. Con K, Lambert AS, Valiulis SN, Malinick AS, Tanabe I, Cheng Q (2020) Plasmonic biosensing with aluminum thin films under the Kretschmann configuration. Anal Chem 92:8654–8659

    Article  CAS  Google Scholar 

  10. Arora P, Awasthi HV (2019) Aluminum-based engineered plasmonic nanostructures for the enhanced refractive index and thickness sensing in ultraviolet-visible-near infrared spectral range. Progress Electromagn Res M 79:167–174

    Article  CAS  Google Scholar 

  11. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8(1):834–840

    Article  CAS  PubMed  Google Scholar 

  12. Renard D, Tian S, Ahmadivand A, DeSantis CJ, Clark BD, Nordlander P, Halas NJ (2019) Polydopamine-stabilized aluminum nanocrystals: aqueous stability and Benzo[a]pyrene detection. ACS Nano 13:3117–3124

    Article  CAS  PubMed  Google Scholar 

  13. King NS, Liu L, Yang X, Cerjan B, Everitt HO, Nordlander P, Halas NJ (2015) Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9(11):10628–10636

    Article  CAS  PubMed  Google Scholar 

  14. Saber G, Sagor RH (2015) Design and study of nano-plasmonic couplers using aluminium arsenide and alumina. IET Optoelectron 9(3):125–130

    Article  Google Scholar 

  15. Shalabney A, Abdulhalim I (2010) Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors Actuators: A Phys 159(1):24–32

    Article  CAS  Google Scholar 

  16. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54:3–15

    Article  CAS  Google Scholar 

  17. Fu H, Zhang S, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sensors J 15(10):5478–5482

    Article  CAS  Google Scholar 

  18. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  PubMed  Google Scholar 

  19. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sensors Actuators: B Chem 160(1):623–631

    Article  CAS  Google Scholar 

  20. Lahav A, Shalabaney A, Abdulhalim I (2009) Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J Nanophotonics 3(031501):1–14

    Google Scholar 

  21. Zhan T, Shi X, Dai Y, Liu X, Zi J (2013) Transfer matrix method for optics in graphene layers. J Phys Condens Matter 25(21):1–8

    Article  CAS  Google Scholar 

  22. S. Raikwar, Y. K. Prajapati, D. K. Srivastava, J. B. Maurya, and J. P. Saini (2020) Detection of leptospirosis bacteria in rodent urine by surface plasmon resonance sensor using graphene. Photonics Sensors. https://doi.org/10.1007/s13320-020-0587-2

  23. Kumar A, Sharma AK (2018) Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer. Photonics Nanostruct Fundam Appl 28:94–99

    Article  Google Scholar 

  24. Shukla S, Venkatesh V, Arora P (2020) Highly sensitive self-referenced plasmonic devices based on engineered periodic nanostructures for sensing in the communication band. J Opt Eng 59(6):65101–65108

    Article  CAS  Google Scholar 

  25. Maharana PK, Jha R (2012) Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors Actuators: B Chem 169:161–166

    Article  CAS  Google Scholar 

  26. Malitson IH (1963) A redetermination of some optical properties of calcium fluoride. Appl Opt 2(11):1103–1107

    Article  CAS  Google Scholar 

  27. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  PubMed  Google Scholar 

  28. Rahman MS, Anower S, Hasan R, Hossain B, Haque I (2017) Design and numerical analysis of highly sensitive au-MoS2 -graphene based hybrid surface plasmon resonance biosensor. Opt Commun 396:36–43

    Article  CAS  Google Scholar 

  29. Jha R, Sharma AK (2009) High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt Lett 34(6):749–751

    Article  CAS  PubMed  Google Scholar 

  30. Kim Y, Kwon M (2017) Electroabsorption modulator based on inverted-rib-type silicon waveguide including double graphene layers. J Opt 19(045804):1–9

    CAS  Google Scholar 

  31. Zhang L, Tang L, Wei W, Cheng X, Wang W, Zhang H (2016) Enhanced near-infrared absorption in graphene with multilayer metal-dielectric -metal nanostructure. Opt Express 24(18):1–8

    Article  Google Scholar 

  32. Mohsin M, Neumaier D, Schall D, Otto M, Matheisen C, Giesecke AL, Sagade AA, Kurz H (2015) Experimental verification of electro-refractive phase modulation in graphene. Sci Rep 5(10967):1–7

    Google Scholar 

  33. Shu H, Su Z, Huang L, Wu Z, Wang X, Zhang Z, Zhiping Z (2018) Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci Rep 8(991):1–8

    Google Scholar 

  34. Bhatia P, Gupta BD (2011) Surface plasmon resonance based fiber optic refractive index sensor: sensitivity enhancement. Appl Opt 50(14):2032–2036

    Article  PubMed  Google Scholar 

  35. Frisbie SP, Krishnan A, Xu X, de Peralta LG, Nikishin SA, Holtz MW, Bernussi AA (2009) Optical reflectivity of asymmetric dielectric-metal-dielectric planar structures. J Lightwave Technol 27(15):2964–2969

    Article  CAS  Google Scholar 

  36. Panda A, Pukhrambam PD, Keiser G (2020) Performance analysis of graphene – based surface plasmon resonance biosensor for blood glucose and gas detection. Appl Phys A 126(3):1–12

    Article  CAS  Google Scholar 

  37. Chen S, Lin C (2019) Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag, and Cu in the visible region. Mater Res Express 6(056503):1–8

    Google Scholar 

  38. Maharana PK, Jha R, Palei S (2014) Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sensors Actuators: B Chem 190:494–501

    Article  CAS  Google Scholar 

  39. Prakash G, Srivastava RK, Gupta SN, Sood AK (2019) Plasmon-induced efficient hot carrier generation in graphene on gold ultrathin film with periodic array of holes: ultrafast pump-probe spectroscopy. J Chem Phys 151(234712):1–9

    Google Scholar 

  40. Koppens FHL, Chang DE, De Abajo FJG (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  CAS  PubMed  Google Scholar 

  41. Novko D (2017) Dopant-induced plasmon decay in graphene. Nano Lett 17:6991–6996

    Article  CAS  PubMed  Google Scholar 

  42. Rahman MS, Hasan R, Akter K, Anower MS (2018) A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt Mater 75:567–573

    Article  CAS  Google Scholar 

  43. Gan CH, Gan CH (2012) Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl Phys Lett 101(111609):1–4

    Google Scholar 

  44. Bezares FJ, De Sanctis A, Saavedra JRM, Woessner A, Alonso-gonza P, Amenabar I, Chen J, Bointon TH, Dai S, Fogler MM, Basov DN, Hillenbrand R, Craciun MF, Garcia de Abajo FJ, Russo S, Koppens FHL (2017) Intrinsic plasmon − phonon interactions in highly doped Graphene: a near-field imaging study. Nano Lett 17:5908–5913

  45. Hoggard A, Wang L, Ma L, Fang Y, You G, Olson J, Liu Z, Chang W-S, Ajayan PM, Link S (2013) Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 7(12):11209–11217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wijesinghe TM, Permarante M, Agarwal GP (2015) Low-loss dielectric-loaded graphene surface plasmon polariton waveguide based biochemical sensor. J Appl Phys 117(213105):1–10

    Google Scholar 

  47. Kitagawa YF, Takahashi T, Hayashi H (1981) Relationship between the refractive index and specific gravity of the rat urine. Exp Anim 30(3):307–311

    Article  CAS  Google Scholar 

  48. Abbas A, Linman MJ, Cheng Q (2011) Sensitivity comparison of surface plasmon resonance and plasmon waveguide resonance biosensors. Sensors Actuators: B Chem 156(1):169–175

    Article  CAS  Google Scholar 

  49. Li J, Ye J, Chen C, Li Y, Verellen N, Moshchalkov VV, Lagae L, Van Dorpe P (2015) Revisiting the surface sensitivity of nanoplasmonic biosensors. ACS Photonics 2(425–431):425–431

    Article  CAS  Google Scholar 

  50. Verma A, Prakash A, Tripathi R (2015) Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt Quant Electron 47:1197–1205

    Article  CAS  Google Scholar 

  51. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Birla Institute of Technology and Science, Pilani (Rajasthan), India for providing the Research Initiation Grant (RIG) and Additional Competitive Research Grant (ACRG). The authors would also like to thank Nihal Singh and Vishnu Venkatesh for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally to the work.

Corresponding author

Correspondence to Pankaj Arora.

Ethics declarations

The authors declare no competing interests. This work does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Both the authors give their full consent.

Consent for Publication

Both the authors give their full consent for the publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Arora, P. Design and Analysis of Aluminum-Silicon-Graphene Based Plasmonic Device for Biosensing Applications in the Optical Communication Band. Silicon 13, 3703–3711 (2021). https://doi.org/10.1007/s12633-021-00953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-00953-4

Keywords

Navigation