Skip to main content
Log in

A Kinetic Model of Silicon Nanocrystal Formation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon nanocrystals (SiNC) in silicon oxide is a promising material for many applications in micro- and nanoelectronics. This article develops a theory of the kinetics of SiNC formation with the both diffusion and reaction mechanisms of their formation being taken into account. The theoretical expressions obtained for the nanocrystals concentration change and silicon implanted in oxide and their sizes are consistent with experimental results and can be used to optimize the technological processes conditions of SiNC formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ni Z, Zhou S, Zhao S, Peng W, Yang D, Pi X (2019) Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R: Reports 138:85–117. https://doi.org/10.1016/j.mser.2019.06.001

    Article  Google Scholar 

  2. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 110:389–458. https://doi.org/10.1021/cr900137k

    Article  CAS  PubMed  Google Scholar 

  3. Gupta A, Khalil ASG, Offer M, Geller M, Winterer M, Lorke A, Wiggers H (2011) Synthesis and Ink-Jet Printing of Highly Luminescing Silicon Nanoparticles for Printable Electronics. J Nanosci Nanotechnol 11:5028. https://doi.org/10.1166/jnn.2011.4184, http://www.ncbi.nlm.nih.gov/pubmed/21770139

    Article  CAS  PubMed  Google Scholar 

  4. Daldosso N, Pavesi L (2009) Nanosilicon photonics. Laser Photon Rev 3:508–534. https://doi.org/10.1002/lpor.200810045

    Article  CAS  Google Scholar 

  5. Bisadi Z, Mancinelli M, Manna S, Tondini S, Bernard M, Samusenko A, Ghulinyan M, Fontana G, Bettotti P, Ramiro-Manzano F, Pucker G, Pavesi L (2015) Silicon nanocrystals for nonlinear optics and secure communications. Physica Status Solidi (A) Appl Mater Sci 212:2659–2671. https://doi.org/10.1002/pssa.201532528

    Article  CAS  Google Scholar 

  6. Priolo F, Gregorkiewicz T, Galli M, Krauss TF (2014) Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 9:19–32. https://doi.org/10.1038/nnano.2013.271

    Article  CAS  PubMed  Google Scholar 

  7. Nozik AJ (2010) Nanoscience and Nanostructures for Photovoltaics and Solar Fuels. Nano lett 10:2735. https://doi.org/10.1021/nl102122x, http://www.ncbi.nlm.nih.gov/pubmed/20597472

    Article  CAS  PubMed  Google Scholar 

  8. Conibeer G, Green MA, König D, Perez-Wurfl I, Huang S, Hao X, Di D, Shi L, Shrestha S, Puthen-Veetil B, So Y, Zhang B, Wan Z (2011) Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Prog Photovolt Res Appl 19:813–824. https://doi.org/10.1002/pip.1045

    Article  CAS  Google Scholar 

  9. Mangolini L (2013) Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. J Vac Sci Technol B 31:20801–020801. https://doi.org/10.1116/1.4794789

    Article  CAS  Google Scholar 

  10. Löper P, Canino M, López-Vidrier J, Schnabel M, Schindler F, Heinz F, Witzky A, Bellettato M, Allegrezza M, Hiller D, Hartel A, Gutsch S, Hernández S, Guerra R, Ossicini S, Garrido B, Janz S, Zacharias M (2013) Silicon nanocrystals from high-temperature annealing: Characterization on device level. Phys Status Solidi A 210:669–675. https://doi.org/10.1002/pssa.201200824

    Article  CAS  Google Scholar 

  11. Summonte C, Allegrezza M, Bellettato M, Liscio F, Canino M, Desalvo A, López-Vidrier J, Hernández S, López-Conesa L, Estradé S, Peiró F, Garrido B, Löper P, Schnabel M, Janz S, Guerra R, Ossicini S (2014) Silicon nanocrystals in carbide matrix. Sol Energy Mater Sol Cells 128:138–149. https://doi.org/10.1016/j.solmat.2014.05.003

    Article  CAS  Google Scholar 

  12. Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial J-P, Gogna P (2007) New Directions for Low-Dimensional Thermoelectric Materials. Adv Mater 19:1043–1053. https://doi.org/10.1002/adma.200600527

    Article  CAS  Google Scholar 

  13. Claudio T, Stein N, Stroppa DG, Klobes B, Koza MM, Kudejova P, Petermann N, Wiggers H, Schierning G, Hermann RP (2014) Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties. Phys Chem Chem Phys: PCCP 16:25701. https://doi.org/10.1039/c3cp53749h

    Article  CAS  PubMed  Google Scholar 

  14. Tang J, Wang H-T, Lee DH, Fardy M, Huo Z, Russell TP, Yang P (2010) Holey Silicon as an Efficient Thermoelectric Material. Nano lett 10:4279. https://doi.org/10.1021/nl102931z

    Article  CAS  PubMed  Google Scholar 

  15. O'Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomedicine 1:451–472. https://doi.org/10.2147/nano.2006.1.4.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McVey BFP, Prabakar S, Gooding JJ, Tilley RD (2017) Solution Synthesis, Surface Passivation, Optical Properties, Biomedical Applications, and Cytotoxicity of Silicon and Germanium Nanocrystals. ChemPlusChem 82:60–73. https://doi.org/10.1002/cplu.201600207

    Article  CAS  PubMed  Google Scholar 

  17. Dimitrakis P, Kapetanakis E, Tsoukalas D, Skarlatos D, Bonafos C, Ben Asssayag G, Claverie A, Perego M, Fanciulli M, Soncini V, Sotgiu R, Agarwal A, Ameen M, Sohl C, Normand P (2004) Silicon nanocrystal memory devices obtained by ultra-low-energy ion-beam synthesis. Solid State Electron 48:1511–1517. https://doi.org/10.1016/j.sse.2004.03.016

    Article  CAS  Google Scholar 

  18. Yang P, Gwilliam RM, Crowe IF, Papachristodoulou N, Halsall MP, Hylton NP, Hulko O, Knights AP, Shah M, Kenyon AJ (2013) Size limit on the phosphorous doped silicon nanocrystals for dopant activation. Nucl Instrum Methods Phys Res Sec B: Beam Interact Mater Atoms 307:456. https://doi.org/10.1016/j.nimb.2012.12.077, https://linkinghub.elsevier.com/retrieve/pii/S0168583X1300092X

    Article  CAS  Google Scholar 

  19. Ischenko AA, Fetisov GV, Aslanov LA (2015) Nanosilicon: properties, synthesis, applications, methods of analysis and control: properties, synthesis, applications, methods of analysis and control. CRC Press, Boca Raton

    Google Scholar 

  20. Arduca E, Perego M (2017) Doping of silicon nanocrystals. Mater Sci Semicond Process 62:156–170. https://doi.org/10.1016/j.mssp.2016.10.054, https://linkinghub.elsevier.com/retrieve/pii/S1369800116304851

    Article  CAS  Google Scholar 

  21. Fistul’ VI (1977) Raspad peresyshchennykh poluprovodnikovykh tverdykh rastvorov (Decomposition of Supersaturated Semiconductor Solid Solutions) (Metallurgiya, Moscow)

  22. Bulyarskii SV, Svetukhin VV, Prikhod’ko OV (1999) Spatially inhomogeneous oxygen precipitation in silicon. Semiconductors 33:1157–1162. https://doi.org/10.1134/1.1187839

    Article  CAS  Google Scholar 

  23. Fistul VI (2004) Impurities in semiconductors. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Slezov VV, Schmelzer J (1997) Maximum number of new-phase particles nucleated during the decay of solid solutions. Phys Solid State 39:1971–1977. https://doi.org/10.1134/1.1130211, http://link.springer.com/10.1134/1.1130211

    Article  Google Scholar 

  25. Kukushkin SA, Osipov AV (1998) Kinetics of first-order phase transitions in the asymptotic stage. J Exp Theor Phys 86:1201–1208. https://doi.org/10.1134/1.558591

    Article  Google Scholar 

  26. Kukushkin SA, Osipov AV (1998). Phys-Usp 41:983. https://doi.org/10.1070/PU1998v041n10ABEH000461http://stacks.iop.org/1063-7869/41/i=10/a=R02?key=crossref.1be705aa5a9a052cf1f577f0c53f4975

    Article  Google Scholar 

  27. Volmer M (1939) Kinetik der Phasenbildung. Steinkopff, Dresden

    Google Scholar 

  28. Slezov VV, Schmelzer J (1994). Phys Solid State (Fizika tvyordogo Tela) 36:353 https://journals.ioffe.ru/articles/viewPDF/16364

    Google Scholar 

  29. Slezov VV, Schmelzer J (1994). J Phys Chem Solids 55:243. https://doi.org/10.1016/0022-3697(94)90139-2https://linkinghub.elsevier.com/retrieve/pii/0022369794901392

    Article  CAS  Google Scholar 

  30. Turnbull D (1953). Acta Metallurgica 1:684. https://doi.org/10.1016/0001-6160(53)90026-1

    Article  CAS  Google Scholar 

  31. Turnbull D (1955). Acta Metallurgica 3:55. https://doi.org/10.1016/0001-6160(55)90012-2https://linkinghub.elsevier.com/retrieve/pii/0001616055900122

    Article  CAS  Google Scholar 

  32. Ham FS (1958). J Phys Chem Solids 6:335. https://doi.org/10.1016/0022-3697(58)90053-2

    Article  CAS  Google Scholar 

  33. Ham FS (1959) Stress‐Assisted Precipitation on Dislocations. J Appl Phys 30:915–926. https://doi.org/10.1063/1.1735262

    Article  CAS  Google Scholar 

  34. Ham FS (1959) Diffusion‐Limited Growth of Precipitate Particles. J Appl Phys 30:1518–1525. https://doi.org/10.1063/1.1734993

    Article  CAS  Google Scholar 

  35. Brilliantov NV, Krapivskiy PL (1989). Phys Solid State (Fizika tvyordogo Tela) 31:172 https://journals.ioffe.ru/articles/viewPDF/28361

    Google Scholar 

  36. Ernst MH (1986) In: Pietronero L, Tosatti E (ed) Fractals in physics. North-Holland Amsterdam, p 289

  37. Dubrovsky VG (1996) On an exact solution of master equations for the model of reversible growth. Theor Math Phys 108:1110–1118. https://doi.org/10.1007/BF02070679

    Article  Google Scholar 

  38. Lockwood DJ, Pavesi L (2004) In Silicon Photonics. Springer, Berlin, p 1

    Google Scholar 

  39. Marri I, Degoli E, Ossicini S (2017) Doped and codoped silicon nanocrystals: The role of surfaces and interfaces. Prog Surf Sci 92:375–408. https://linkinghub.elsevier.com/retrieve/pii/S0079681617300217. https://doi.org/10.1016/j.progsurf.2017.07.003

    Article  CAS  Google Scholar 

  40. Takahashi T, Fukatsu S, Itoh KM, Uematsu M, Fujiwara A, Kageshima H, Takahashi Y, Shiraishi K (2003) Self-diffusion of Si in thermally grown SiO2 under equilibrium conditions. J Appl Phys 93:3674–3676. https://doi.org/10.1063/1.1554487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 0004-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Bulyarskiy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Svetukhin, V.V. A Kinetic Model of Silicon Nanocrystal Formation. Silicon 13, 3321–3327 (2021). https://doi.org/10.1007/s12633-020-00703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00703-y

Keywords

Navigation