Skip to main content
Log in

Quantum Analytical Model for Lateral Dual Gate UTBB SOI MOSFET for Analog/RF Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents a quantum analytical modeling of UTBB SOIMOSFET as lateral dual gate for the first time. In this paper, a 2-dimensional analytical modeling of electric field distribution, threshold voltage (Vth), surface potential and drain current (ID) have been developed and then including Quantum mechanical effects (QMEs)in it. The proposed model provides an expression for Vth shift due to QMEs, which can be used for compact modeling as a quantum correction term. The results of quantum analytical modeling have been verified with the results achieved from numerical TCAD device simulator. Different analog/ radio frequency (RF) performance parameters like transconductance (gm), output resistance (RO), transconductance generation factor (TGF), intrinsic gain (gm*RO), cut-off frequency (fT), gain bandwidth product (GBW), maximum frequency of oscillation (fmax) etc. has been investigated. The effect of negative voltage on the control gate on RF/analog performance parameters has been studied. Result reveals that the potential of UTTB SOI MOSFET with lateral dual gate becomes a choice for analog and mixed signal SOC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITRS (2009) International technology roadmap for semiconductors 2009 edition and 2010 update. http://www.itrs.net. Accessed 2018

  2. Björkqvist K, Arnborg T (1981) Short Channel effects in MOS-transistors. Phys Scr 24:418–421

    Article  Google Scholar 

  3. Taur JY, Buchanan DA, Chen W, Frank DJ, Ismail KE, Lo SH et al (1997) CMOS scaling into the nano meter regime. Proc IEEE 85:486–504

    Article  Google Scholar 

  4. Tang Z, Tang B, Zhao L, Wang G, Xu J, Xu Y, Wang H, Wang D, Li J, Lin F, Yan J, Zhao C, Ye T (2014) Impacts of Back gate bias stressing on device characteristics for extremely thin SoI (ETSoI) MOSFETs. IEEE Electron Device Letters 35:303–305

    Article  CAS  Google Scholar 

  5. Miura-Mattausch M, Feldmann U, Fukunaga Y, Miyake M, Kikuchihara H, Ueno F, Mattausch HJ, Nakagawa T, Sugii N (2014) Compact modeling of SOI MOSFETs with ultrathin silicon and BOX layers. IEEE Transactions on Electron Devices 61:255–265

    Article  CAS  Google Scholar 

  6. Chiang TK (2016) A Short-Channel-effect-degraded noise margin model for Junctionless double-gate MOSFET working on subthreshold CMOS logic gates. IEEE Transaction on Electron Devices 63:2284–2289

    Google Scholar 

  7. Hong S (2019) Compact charge modeling of double-gate MOSFETs considering the density-gradient equation. IEEE Journal of the Electron Devices Society 7:409–416

    Article  CAS  Google Scholar 

  8. Taur Y, Choi W, Zhang J, Su M (2019) A non-GCA DG MOSFET model continuous into the velocity saturation region. IEEE Transactions on Electron Devices 66:1160–1166

    Article  CAS  Google Scholar 

  9. Das R, Chanda M, Sarkar CK (2018) Analytical modeling of charge plasma-based optimized Nano gap embedded surrounding gate MOSFET for label-free biosensing. IEEE Transactions on Electron Devices 65:5487–5493

    Article  CAS  Google Scholar 

  10. Roy NC, Gupta A, Rai S (2015) Analytical surface potential modeling and simulation of junctionless double gate (JLDG) MOSFET for ultra-low-power analog/RF circuits. Microelectron J 46:916–922

    Article  CAS  Google Scholar 

  11. Lee CW, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP (2010) Performance estimation of junctionless multigate transistors. Solid-State Electronics 54:97–103

    Article  Google Scholar 

  12. Grenouillet L, Liu Q, Wacquez R et al. (2013) UTBB FDSOI scaling enablers for the 10 nm node. Proceeding of IEEE SOI-3D-subthreshold microelectronics technology unified conference;

  13. Stephane M, Thomas S (2016) UTBB FDSOI: evolution and opportunities. Solid State Electron 125:63–72

    Article  Google Scholar 

  14. Karatsori TA, Tsormpatzoglou A, Theodorous CG (2015) Analytical compact model for lightly-doped Nanoscale ultrathin body and box SOI MOSFETs with back-gate control. IEEE Trans Electron Devices 62:3117–3124

    Article  Google Scholar 

  15. Fasarakis N et al (2014) Analytical modeling of threshold voltage and Interface ideality factor of Nanoscale ultrathin body and buried oxide SOI MOSFETs with Back gate control. IEEE Transactions on Electron Devices 61:969–975

    Article  CAS  Google Scholar 

  16. Goel E, Kumar S, Singh K, Singh B, Kumar M, Jit S (2016) 2-D analytical modeling of threshold voltage for Graded-Channel dual-material double-gate MOSFETs. IEEE Transactions on Electron Devices 63:966–973

    Article  CAS  Google Scholar 

  17. Shee S, Bhattacharyya G, Sarkar SK (2014) Quantum analytical modeling for device parameters and $I$ – $V$ characteristics of Nanoscale dual-material double-gate silicon-on-nothing MOSFET. IEEE Transactions on Electron Devices 61:2697–2704

    Article  CAS  Google Scholar 

  18. Goel V, Maurya AK, Sharma S and Kumar S. (2016) Study of role of channel engineering and gate engineering in silicon-on-insulator (SOI) MOSFETs using 2-D analytical modeling. Proceeding of 3rd international conference on emerging electronics (ICEE)

  19. Kale S, Kondekar PN (2017) Design and investigation of dielectric engineered dopant segregated Schottky barrier MOSFET with NiSi source/drain. IEEE Transactions on Electron Devices 64:4400–4407

    Article  CAS  Google Scholar 

  20. Wei S, Zhang G, Shao Z, Geng L, Yang C (2017) Analysis of a high-performance ultra-thin body ultra-thin box silicon-on-insulator MOSFET with the lateral dual-gates: featuring the suppression of the DIBL. Microsyst Technol 24:3949–3956

    Article  Google Scholar 

  21. Wei S, Zhang G, Geng L, Shao Z, Yang C (2018) Comparison of the performance improvement for the two novel SOItunnelFETs with the lateral dual-gate and triple-gate. Microsystem technologies Published (30 July 2018)

  22. Basak A, Sarkar A (2019) Analytical drain current model of UTBB SOI MOSFET with lateral dual gates to suppress short channel effect. Devices for Integrated Circuit (DevIC): 269–274, https://doi.org/10.1109/DEVIC.2019.8783327

  23. Roldan JB, Godoy A, Gamiz F, Balaguer M (2008) Modelling the centroid and the inversion charge in cylindrical surrounding gate MOSFETs including quantum effects. IEEE Transactions on Electron Devices 55:411–416

    Article  CAS  Google Scholar 

  24. Chakraborty A, Sarkar A (2016) An analytical model for quantum confinement in silicon nanowires. Quantum matter, American Scientific Publishers, USA 5:135–138

    Article  Google Scholar 

  25. Mishra VK, Bansal B, Gupta A, Agrawal A (2020) Induction of buried oxide layer in substrate FD-SOI MOSFET for improving the digital and analog performance. Silicon 12:2241–2249

    Article  CAS  Google Scholar 

  26. Basak A, Chanda M, Sarkar A (2019) Drain current modelling of unipolar junction dual material double-gate MOSFET (UJDMDG) for SoC applications. Microsyst Technol. https://doi.org/10.1007/s00542-019-04691-x

  27. Chakraborty A, Sarkar A (2015) Investigation of analog/RF performance of staggered hetero junctions based nanowire tunnelling field-effect transistors. Superlattices and Microstructure 80:125–135

    Article  CAS  Google Scholar 

  28. Swain SK, Dutta A, Adak S, Pati SK, Sarkar CK (2016) Influence of channel length and high-K oxide thickness on subthreshold analog/RF performance of graded channel and gate stack DGMOSFETs. Microelectron Reliab 61:24–29

    Article  CAS  Google Scholar 

  29. Pati SK, Koley K, Dutta A, Mohankumar N, Sarkar CK (2014) Study of body and oxide thickness variation on analog and RF performance of underlap DG-MOSFETs. Microelectron Reliab 54:1137–1142

    Article  CAS  Google Scholar 

  30. Sarkar A, Das AK, De S, Sarkar CK (2012) Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectronics Journal 43:873–882

    Article  Google Scholar 

  31. Narendar V, Girdhardas KA (2018) Surface potential modeling of Graded-Channel gate-stack (GCGS) high-K dielectric dual-material double-gate (DMDG) MOSFET and analog/RF performance study. Silicon 10:2865–2875

    Article  CAS  Google Scholar 

  32. Biswal SM, Baral B, De D, Sarkar A (2016) Study of effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire tunnel FET. Superlattice Microst 91:319–330

    Article  CAS  Google Scholar 

  33. Baral B, Biswal SM, De D, Sarkar A (2017) Radio frequency/analog and linearity performance of a junctionless double gate metal–oxide–semiconductor field-effect transistor. SIMULATION 93:985–993

    Article  Google Scholar 

  34. Biswal SM, Baral B, De D, Sarkar A (2017) Simulation and comparative study on analog/RF and linearity performance of III–V semiconductor-based staggered heterojunction and InAs nanowire(nw) Tunnel FET. Microsystem Technologies, Springer Berlin Heidelberg :1–7

  35. Karim MA, Haque A (2010) A physically based accurate model for quantum mechanical correction to the surface potential of Nanoscale MOSFETs. IEEE Transactions on Electron Devices 57:496–502

    Article  CAS  Google Scholar 

  36. Itocazu VT, Sasaki KRA, Sonnenberg V, Martino JA, Simoen E, Claeys C (2017) Analytical model for threshold voltage in UTBB SOI MOSFET in dynamic threshold voltage operation. Journal of Integrated Circuits and Systems 12:101–106

    Article  Google Scholar 

  37. Li F, Mudanai S, Register LF, Banerjee SK (2005) A physically based compact gate C-V model for ultrathin (EOT~1nm and below) gate dielectric MOS devices. IEEE Transactions on Electron Devices 52:1148–1158

    Article  CAS  Google Scholar 

  38. Naskar S, Sarkar SK (2013) Quantum analytical model for inversion charge and threshold voltage of Short-Channel dual-material double-gate SON MOSFET. IEEE Transactions on Electron Devices 60:2734–2740

    Article  CAS  Google Scholar 

  39. Suzuki K, Sugii T (1995) Analytical models for n+−p+ double gate SOI MOSFET’s. IEEE Trans Electron Devices 42:1940–1948

    Article  CAS  Google Scholar 

  40. Arora ND, Rios R, Huang CL, Raol K (1994) PCIM: a physically based continuous short-channel IGFET model for circuit simulation. IEEE Trans Electron Devices 41:988–997

    Article  Google Scholar 

  41. Roldan JB, Gamiz F, Lopez-Villanueva JA, Carceller JE (1997) (1997) modeling effects of electron velocity overshoot in a MOSFET. IEEE trans. Electron Devices 44:841–846

    Article  Google Scholar 

  42. Roldan JB, Gamiz F, Lopez-Villanueva JA, Cartujo P, Car-celler JE (1998) A model for the drain current of deep sub micrometer MOSFET’s including electron-velocity overshoot. IEEE Trans Electron Devices 45:2249–2251

    Article  Google Scholar 

  43. Reddy GV, Kumar MJ (2005) (2005) a new dual material double gate (DMDG) nano scale SOI MOSFET: two dimensional analytical modelling and simulation. IEEE Trans electron Devices 4:260–268

    Google Scholar 

  44. Chen YG, Kuo JB, Yu Z, Dutton RW (1998) (1998) an analytical drain current model for short-channel fully-depleted ultrathin siliconon- in-sulatorn MOS devices. Solid State Electron 38:2051–2057

    Article  Google Scholar 

  45. Device simulator ATLAS User manual (2011) Silvaco Int., Santa Clara, CA [Online]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arighna Basak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A., Sarkar, A. Quantum Analytical Model for Lateral Dual Gate UTBB SOI MOSFET for Analog/RF Performance. Silicon 13, 3131–3139 (2021). https://doi.org/10.1007/s12633-020-00666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00666-0

Keywords

Navigation