Skip to main content
Log in

Novel Asymmetric Recessed-Gate/Source Architecture Advancement of Dual-Metal-Gate SiGe/Si Dopingless Nanowire-TFET for Low-Voltage Performance Optimization

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A dopingless vertical Nanowire (NW) Tunnel Field Effect Transistor TFET structure has been designed using techniques such as Dual-Metal Gate (DMG), Heteromaterial Channel (HmC) and Heterodielectric Oxide (HdO) to enhance the device performance. The proposed device is investigated to acknowledge the device behavior for RF/Low-Noise applications. The essence of the reported work is to capture the effect of work function variation of DMG on device characteristics for noise enhancement/degradation. The vertical structure simplifies the implementation of charge-plasma technique for induced doping within the source/drain region enveloped by Gate-All-Around (GAA) architecture. Different work function combinations of gate metal1 (GM1) and gate metal2 (GM2) are used for calculations and compared to acquire optimized results. Other than Silicon, Silicon-Germanium compound (SixGe1-x) with composition factor (x) equals to 0.55 is used for HmC, whereas Zirconium Silicate is preferred for HdO. The characteristics analysis includes the negative drain bias variation that captures an interesting tunnel diode characteristics with peak current to valley current ratio of approx. 108. The proposed structure is modified to reduce the Gate-to-Source capacitive coupling and drain current enhancement. The proposed device is analyzed for Ambipolar-state, OFF-state and ON-state, which is required to understand the proper working of TFET devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruton LT, Trofimenkoff FN, Treleaven DH (1973) Noise performance of low-sensitivity active filters. IEEE J Solid State Circuits 8(1):85–91

    Article  Google Scholar 

  2. Poimboeuf, M.K., DiNapoli, J. and Brainard, G.L., Graphics Properties Holdings Inc, 1998. Circuit for filtering a power supply for noise sensitive devices. U.S. Patent 5,825,238

  3. Voinigescu SP, Maliepaard MC, Showell JL, Babcock GE, Marchesan D, Schroter M, Schvan P, Harame DL (1997) A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J Solid State Circuits 32(9):1430–1439

    Article  Google Scholar 

  4. Hashemi H, Hajimiri A (2002) Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Transactions on Microwave Theory and techniques 50(1):288–301

    Article  Google Scholar 

  5. Paidi V, Xie S, Coffie R, Moran B, Heikman S, Keller S, Chini A, DenBaars SP, Mishra UK, Long S, Rodwell MJ (2003) High linearity and high efficiency of class-B power amplifiers in GaN HEMT technology. IEEE Transactions on Microwave Theory and Techniques 51(2):643–652

    Article  Google Scholar 

  6. Kerr, D.C., McKay, T.G., Carroll, M. and Gering, J.M., RF Micro Devices Inc, 2011. Linearity improvements of semiconductor substrate based radio frequency devices. U.S. Patent 8,076,750

  7. Nicholls, C.T. and Roussel, A., Nortel Networks Ltd, 2006. Adaptive feedforward noise cancellation circuit. US Patent 7,058,368

  8. Black, G.R., Motorola Solutions Inc, 1996. Amplifier and biasing circuit therefor. U.S. Patent 5,559,471

  9. Querlioz D, Saint-Martin J, Huet K, Bournel A, Aubry-Fortuna V, Chassat C, Galdin-Retailleau S, Dollfus P (2007) On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation. IEEE Transactions on Electron Devices 54(9):2232–2242

    Article  CAS  Google Scholar 

  10. Majima, H., Saito, Y. and Hiramoto, T., 2001. Impact of quantum mechanical effects on design of nano-scale narrow channel n-and p-type MOSFETs. In International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224) (pp. 33-3). IEEE

  11. Li Y, Hwang CH (2008) High-frequency characteristic fluctuations of nano-MOSFET circuit induced by random dopants. IEEE Transactions on Microwave Theory and Techniques 56(12):2726–2733

    Article  CAS  Google Scholar 

  12. Cantley, K.D., Liu, Y., Pal, H.S., Low, T., Ahmed, S.S. and Lundstrom, M.S., 2007. Performance analysis of III-V materials in a double-gate nano-MOSFET. In 2007 IEEE International Electron Devices Meeting (pp. 113-116). IEEE

  13. Young KK (1989) Short-channel effect in fully depleted SOI MOSFETs. IEEE Transactions on Electron Devices 36(2):399–402

    Article  Google Scholar 

  14. Suk, S.D., Lee, S.Y., Kim, S.M., Yoon, E.J., Kim, M.S., Li, M., Oh, C.W., Yeo, K.H., Kim, S.H., Shin, D.S. and Lee, K.H., 2005. High performance 5nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk si wafer, characteristics, and reliability. In IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. (pp. 717-720). IEEE

  15. Ohtou T, Saraya T, Hiramoto T (2007) Variable-body-factor SOI MOSFET with ultrathin buried oxide for adaptive threshold voltage and leakage control. IEEE Transactions on Electron Devices 55(1):40–47

    Article  Google Scholar 

  16. Bowman KA, Austin BL, Eble JC, Tang X, Meindl JD (1999) A physical alpha-power law MOSFET model. IEEE J Solid State Circuits 34(10):1410–1414

    Article  Google Scholar 

  17. Rahman A, Guo J, Datta S, Lundstrom MS (2003) Theory of ballistic nanotransistors. IEEE Transactions on Electron Devices 50(9):1853–1864

    Article  CAS  Google Scholar 

  18. Chen ZX, Yu HY, Singh N, Shen NS, Sayanthan RD, Lo GQ, Kwong DL (2009) Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Letters 30(7):754–756

    Article  CAS  Google Scholar 

  19. Krishnamohan, T., Kim, D., Raghunathan, S. and Saraswat, K., 2008. Double-gate strained-Ge Heterostructure tunneling FET (TFET) with record high drive currents and≪ 60mV/dec subthreshold slope. In 2008 IEEE International Electron Devices Meeting (pp. 1-3). IEEE

  20. Wang PF, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D, Hansch W (2004) Complementary tunneling transistor for low power application. Solid State Electron 48(12):2281–2286

    Article  CAS  Google Scholar 

  21. Khatami Y, Banerjee K (2009) Steep subthreshold slope n-and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Transactions on Electron Devices 56(11):2752–2761

    Article  CAS  Google Scholar 

  22. Wan J, Le Royer C, Zaslavsky A, Cristoloveanu S (2011) Tunneling FETs on SOI: suppression of ambipolar leakage, low-frequency noise behavior, and modeling. Solid State Electron 65:226–233

    Article  Google Scholar 

  23. Wang T, Lou L, Lee C (2013) A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Device Letters 34(4):478–480

    Article  Google Scholar 

  24. Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Transactions on Electron Devices 56(9):2092–2098

    Article  CAS  Google Scholar 

  25. Apoorva, Kumar, N., Amin, S.I. and Anand, S., 2020. Design and performance optimization of novel Core–Shell Dopingless GAA-nanotube TFET with Si0.5Ge0.5-based source. IEEE Transactions on Electron Devices, 67(3), pp.789–795

  26. Kumar N, Raman A (2020) Novel design approach of extended gate-on-source based charge-plasma vertical-nanowire TFET: proposal and extensive analysis. IEEE Trans Nanotechnol 19:421–428

    Article  CAS  Google Scholar 

  27. Gupta, A.K., Raman, A. and Kumar, N., 2019. Cylindrical nanowire-TFET with Core-Shell Channel architecture: design and investigation. Silicon, pp 1–8

  28. Hueting RJ, Rajasekharan B, Salm C, Schmitz J (2008) The charge plasma PN diode. IEEE electron device letters 29(12):1367–1369

    Article  Google Scholar 

  29. Kumar, N. and Raman, A., 2019. Design and analog performance analysis of charge-plasma based cylindrical GAA silicon nanowire tunnel field effect transistor. Silicon, pp.1-8

  30. Kumar N, Raman A (2019) Performance assessment of the charge-plasma-based cylindrical GAA vertical nanowire TFET with impact of interface trap charges. IEEE Transactions on Electron Devices 66(10):4453–4460

    Article  CAS  Google Scholar 

  31. Shreya S, Khan AH, Kumar N, Amin SI, Anand S (2019) Core-Shell Junctionless nanotube tunnel field effect transistor: design and sensitivity analysis for biosensing application. IEEE Sensors J 20(2):672–679

    Article  Google Scholar 

  32. Jayaswal N, Raman A, Kumar N, Singh S (2019) Design and analysis of electrostatic-charge plasma based dopingless IGZO vertical nanowire FET for ammonia gas sensing. Superlattice Microst 125:256–270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Raman, A. Novel Asymmetric Recessed-Gate/Source Architecture Advancement of Dual-Metal-Gate SiGe/Si Dopingless Nanowire-TFET for Low-Voltage Performance Optimization. Silicon 13, 3141–3151 (2021). https://doi.org/10.1007/s12633-020-00659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00659-z

Key words

Navigation