Skip to main content
Log in

The effects of source doping concentration and doping gradient on the ON-state current of Si nanowire TFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The tunnel field-effect transistor (TFET) is considered a promising next-generation transistor due to its potentially limit-breaking low subthreshold swing and better immunity against short-channel effects. However, the low ON-state current (ION) of TFETs has been a critical problem. In this work, we investigated the effects of the source doping concentration and the source doping gradient (SDG) on the ION of n-type Si gate-all-around (GAA) nanowire (NW) TFETs using an ATLAS device simulator. Unexpectedly, we found that increasing the source doping concentration does not necessarily improve ION, especially for TFETs with a large SDG. Moreover, although reducing the SDG indeed increases ION, for TFETs with low source doping concentration (e.g., 1 × 1019 cm−3), the improvement in ION by reducing the SDG becomes insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-Type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009). https://doi.org/10.1109/TED.2009.2030831

    Article  Google Scholar 

  2. Seabaugh, A., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE. 98(12), 2095–2110 (2010). https://doi.org/10.1109/JPROC.2010.2070470

    Article  Google Scholar 

  3. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679

    Article  Google Scholar 

  4. Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. J. Electron Devices Soc. 2(4), 44–49 (2014). https://doi.org/10.1109/JEDS.2014.2326622

    Article  Google Scholar 

  5. Avci, U.E., Morris, D.H., Young, I.A.: Tunnel field-effect transistors: prospects and challenges. J. Electron Devices Soc. 3(3), 88–95 (2015). https://doi.org/10.1109/JEDS.2015.2390591

    Article  Google Scholar 

  6. Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Tunnel field-effect transistor without gate-drain overlap. Applied Physics Letters. 91, 053102 (2007). https://doi.org/10.1063/1.2757593

    Article  Google Scholar 

  7. Sandow, C., Knoch, J., Urban, C., Zhao, Q.-T., Mantl, S.: Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid-State Electron. 53, 1126–1129 (2009). https://doi.org/10.1016/j.sse.2009.05.009

    Article  Google Scholar 

  8. Huang, R., Huang, Q., Chen, S., Wu, C., Wang, J., An, X., Wang, Y.: High performance tunnel field-effect transistor by gate and source engineering. Nanotechnology 25, 505201 (2014). https://doi.org/10.1088/0957-4484/25/50/505201

    Article  Google Scholar 

  9. Yang, Z.: Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Device Lett. 37(7), 839–842 (2016). https://doi.org/10.1109/LED.2016.2574821

    Article  Google Scholar 

  10. Li, W., Liu, H., Wang, S., Chen, S., Yang, Z.: Design of High performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Res. Lett. 12(198), 1–8 (2017). https://doi.org/10.1186/s11671-017-1958-3

    Article  Google Scholar 

  11. Chen, S., Liu, H., Wang, S., Li, W., Wang, X., Zhao, L.: Analog/RF performance of T-shape gate dual-source tunnel field-effect transistor. Nanoscale Res. Lett. 13(321), 1–13 (2018). https://doi.org/10.1186/s11671-018-2723-y

    Article  Google Scholar 

  12. Kim, J.H., Kim, H.W., Kim, G., Kim, S., Park, B.-G.: Demonstration of fin-tunnel field-effect transistor with elevated drain. Micromachines 10(30), 1–10 (2019). https://doi.org/10.3390/mi10010030

    Article  Google Scholar 

  13. Vasen, T., Ramvall, P., Afzalian, A., Doornbos, G., Holland, M., Thelander, C., Dick, K.A., Wernersson, L.-E., Passlack, M.: Vertical gate-all-around nanowire GaSb-InAs core-shell n-type tunnel FETs. Sci. Rep. 9(202), 1–9 (2019). https://doi.org/10.1038/s41598-018-36549-z

    Article  Google Scholar 

  14. Hanna, A.N., Fahad, H.M., Hussain, M.M.: InAs/Si hetero-junction nanotube tunnel transistors. Sci. Rep. 5(9843), 1–7 (2015). https://doi.org/10.1038/srep09843

    Article  Google Scholar 

  15. Wang, P.-Y., Tsui, B.-Y.: SixGe1-x epitaxial tunnel layer structure for p-channel tunnel FET improvement. IEEE Trans. Electron Devices 60(12), 4098–4104 (2013). https://doi.org/10.1109/TED.2013.2287633

    Article  Google Scholar 

  16. Anghel, C., Chilagani, P., Amara, A., Vladimirescu, A.: Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96, 122104 (2010). https://doi.org/10.1063/1.3367880

    Article  Google Scholar 

  17. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007). https://doi.org/10.1109/TED.2007.899389

    Article  Google Scholar 

  18. Kumar, N., Raman, A.: Novel design approach of extended gate-on-source based charge-plasma vertical-nanowire TFET: proposal and extensive analysis. IEEE Trans. Nanotechnol. 19, 421–428 (2020). https://doi.org/10.1109/TNANO.2020.2993565

    Article  Google Scholar 

  19. Solay, L.R., Kumar, N., Amin, S.I., Kumar, P., Anand, S.: Design and performance analysis of gate-all-around negative capacitance dopingless nanowire tunnel field effect transistor. Semicond. Sci. Technol. 37, 115001-1–10 (2022). https://doi.org/10.1088/1361-6641/ac86e9

    Article  Google Scholar 

  20. Saeidi, A., Rosca, T., Memisevic, E., Stolichnov, I., Cavalieri, M., Wernersson, L.-E., Ionescu, A.M.: Nanowire tunnel FET with simultaneously reduced subthermionic subthreshold swing and off-current due to negative capacitance and voltage pinning effects. Nano Lett. 20, 3255–3262 (2020). https://doi.org/10.1021/acs.nanolett.9b05356

    Article  Google Scholar 

  21. Chen, C., Huang, Q., Zhu, J., Wang, Z., Zhao, Y., Jia, R., Guo, L., Huang, R.: New insights into energy efficiency of tunnel FET with awareness of source doping gradient variation. IEEE Trans. Electron Devices 65(5), 2003–2009 (2018). https://doi.org/10.1109/TED.2018.2812828

    Article  Google Scholar 

  22. Chen, Z.X., Yu, H.Y., Singh, N., Shen, N.S., Sayanthan, R.D., Lo, G.Q., Kwong, D.-L.: Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Lett. 30(7), 754–756 (2009). https://doi.org/10.1109/LED.2009.2021079

    Article  Google Scholar 

  23. Gandhi, R., Chen, Z., Singh, N., Banerjee, K., Lee, S.: CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤ 50-mV/decade subthreshold swing. IEEE Electron Device Lett. 32(11), 1504–1506 (2011). https://doi.org/10.1109/LED.2011.2165331

    Article  Google Scholar 

  24. Atlas User’s Manual, (2018) Silvaco Inc., Santa Clara, CA, USA, 10

  25. Liu, K.-M., Cheng, C.-P.: Investigation on the effects of gate-source overlap/underlap and source doping gradient of n-type Si cylindrical gate-all-around tunnel field-effect transistors. IEEE Trans. Nanotechnol. 19, 382–389 (2020). https://doi.org/10.1109/TNANO.2020.2991787

    Article  Google Scholar 

  26. Luong, G.V., Narimani, K., Tiedemann, A.T., Bernardy, P., Trellenkamp, S., Zhao, Q.T., Mantl, S.: Complementary strained Si GAA nanowire TFET inverter with suppressed ambipolarity. IEEE Electron Device Lett. 37(8), 950–953 (2016). https://doi.org/10.1109/LED.2016.2582041

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Center for High-performance Computing (NCHC) for providing computational and storage resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keng-Ming Liu.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors also have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, KM., Hsieh, YE. The effects of source doping concentration and doping gradient on the ON-state current of Si nanowire TFETs. J Comput Electron 22, 209–218 (2023). https://doi.org/10.1007/s10825-022-01995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01995-6

Keywords

Navigation