Skip to main content
Log in

Optimization and Performance Analysis of All-Optical Compact 4 and 5-Channel Demultiplexers Based on 2D PC Ring Resonators for Applications in Advanced Optical Communication Systems

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper takes account of the design of 4 and 5 two-dimensional photonic crystal demultiplexers (2D PC DMUXs) and their performance analysis using quasi hexagonal ring resonators. The suggested DMUXs are composed of bus/drop waveguides, power splitters, modified quasi hexagonal ring resonators and two 120 ° bend waveguides. In this design, using a suitable matching between the ring resonators and the waveguides, optimization of control parameters, including the radius and the refractive index (hereinafter referred to as RI) of the inner rod and the coupling rods of the ring resonators, positioning and the radius of the scattering rods, optical transmission efficiency, quality factor, channel spacing, crosstalk and the resonant wavelength of each channel are managed. The average quality factor, optical transmission, spectrum width, channel spacing, maximum and minimum crosstalk are 6661, 96.25%, 0.21 nm, 1.93 nm, −18.16 dB, and − 35.7 dB, respectively for the suggested 4-channel DMUX; and 9125, 90%, 0.16 nm, 1.7 nm, −16.12 dB, and – 40.1 dB, respectively for the suggested 5-channel DMUX. The footprint of our DMUXs is around 681μm2 which is suitable for integrated optics for future all optical communication networks. To determine the photonic band gap (PBG) and the normalized transmission of our structures, the plane wave expansion (PWE) and the finite difference time domain (FDTD) methods are utilized, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajasekar R, Robinson S (2018) Trapezoid 2D photonic crystal nano-ring resonator-based channel drop filter for WDM systems. Photon Netw Commun 36(2):230–245

    Article  Google Scholar 

  2. Kaur S, Saini D, Sappal A (2012) Band gap simulations of 1-dimensional photonic crystal. International Journal of Advanced Research in Computer Science and Electronics Engineering 1(2):161–165

    Google Scholar 

  3. Tian J, Lu Z, Quan M, Jiao Y, Yao Y (2016) Fast response Fabry–Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber. Opt Express 24(18):2132–20142

    Article  Google Scholar 

  4. Lin, Y.T., Chang, W.Y., Wu, C.Y., Zyryanov, V.Y. and Lee, W., 2010. Optical properties of one-dimensional photonic crystal with a twisted-nematic defect layer. Optics express, 18(26):26959–26964

  5. Mohammadi M, Mansouri Birjandi MA (2015) Five-port power splitter base on pillar photonic crystal. Iranian J Sci Tech (IJST), Trans Elect Eng 39(E1):93–100

    Google Scholar 

  6. Huang Z, Yang X, Wang Y, Meng X, Fan R, Wang L (2015) Ultrahigh extinction ratio of polarization beam splitter based on hybrid photonic crystal waveguide structures. Opt Commun 354:9–13

    Article  CAS  Google Scholar 

  7. Liu Y, Wang S, Zhao D, Zhou W, Sun Y (2017) High quality factor photonic crystal filter at k ≈0 and its application for refractive index sensing. Opt Express 25(9):1536–1545

    Google Scholar 

  8. Wang G, Li S, An G, Wang X, Zhao Y, Zhang W (2015) Design of a polarized filtering photonic-crystal fiber with gold-coated air holes. Appl Opt 54(30):8817–8820

    Article  CAS  PubMed  Google Scholar 

  9. Jandieri V, Khomeriki R, Erni D (2018) Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides. Opt Express 26(16):19845–19853

    Article  CAS  PubMed  Google Scholar 

  10. Singh BR, Rawal S (2015) Photonic-crystal-based all-optical NOT logic gate. J Opt Soc Am A 32(12):2260–2263

    Article  Google Scholar 

  11. Fallahi V, Mohammadi M, Seifouri M (2019) Design of two 8-channel optical Demultiplexers using 2D photonic crystal homogeneous ring resonators. Fiber and Integrated Optics 38(5):271–284

    Article  CAS  Google Scholar 

  12. Jiu-Sheng L, Han L, Le Z (2015) Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal. Opt Commun 350:248–251

    Article  Google Scholar 

  13. Palai G, Nayak B, Rout SR (2018) Realisation of optical demux Vis-à-Vis 850/1310/1550 nm using photonic crystal fiber. Optik 159:344–347

    Article  CAS  Google Scholar 

  14. Lee SG, Jung SY, Lee J, Park JM, Kee CS (2016) Self-collimation-based photonic crystal Mach–Zehnder demultiplexer. Journal of Optics 18(9):1–7

    Article  CAS  Google Scholar 

  15. Zhang X, Liao Q, Yu T, Liu N, Huang Y (2012) Novel ultracompact wavelength division demultiplexer based on photonic band gap. Opt Commun 285:274–276

    Article  CAS  Google Scholar 

  16. Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M (2013) A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt Quant Electron 45(10):1063–1075

    Article  Google Scholar 

  17. Kannaiyan V, Dhamodharan SK, Savarimuthu R (2016) Investigation on modified quasi-square PCRR based demultiplexer for WDM applications. Opt Quant Electron 48(8):393–399

    Article  Google Scholar 

  18. Talebzadeh R, Soroosh M, Mehdizadeh F (2016) Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators. Optica Applicata XLVI(4):553–564

    Google Scholar 

  19. Cheng SC, Wang JZ, Chen LW, Wang CC (2012) Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik 123(21):1928–1933

    Article  CAS  Google Scholar 

  20. Colman P, Lunnemann P, Yu Y, Mork J (2016) Ultrafast coherent dynamics of a photonic crystal all-optical switch. Phys Rev Lett 117(23):233901

    Article  PubMed  Google Scholar 

  21. Dong G, Wang Y, Zhang X (2018) High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Opt Lett 43(24):5977–5980

    Article  CAS  PubMed  Google Scholar 

  22. De M, Gangopadhyay TK, Singh VK (2019) Prospects of photonic crystal fiber as physical sensor: An overview. Sensors 19(3):464

    Article  PubMed Central  Google Scholar 

  23. Ge R, Xie J, Yan B, Liu E, Tan W, Liu J (2018) Refractive index sensor with high sensitivity based on circular photonic crystal. J Opt Soc Am A 35(6):992–997

    Article  CAS  Google Scholar 

  24. Mohammadi M, Olyaee S, Seifouri M (2018) Passive integrated optical gyroscope based on photonic crystal ring resonator for angular velocity sensing. Silicon 11(6):2531–2538

    Article  Google Scholar 

  25. Hu, D.J.J., Xu, Z. and Shum, P.P., 2019. Review on photonic crystal fibers with hybrid guiding mechanisms. IEEE Access, 7:pp.67469–67482

  26. Iwamoto S, Takahashi S, Tajiri T, Arakawa Y (2016) Semiconductor three-dimensional photonic crystals with novel layer-by-layer structures. Photonics 3(34):1–12

    Google Scholar 

  27. Rajasekar R, Robinson S (2018) Trapezoid 2D photonic crystal nanoring resonator-based channel drop filter for WDM systems. Photon Netw Commun 36(2):230–245

    Article  Google Scholar 

  28. Lee SG, Jung SY, Lee J, Park J-M, Kee C-S (2016) Self-collimation-based photonic crystal Mach–Zehnder demultiplexer. J Opt 18(9):95103–95110

    Article  Google Scholar 

  29. Venkatachalam K, Sriram Kumar D, Robinson S (2016) Performance analysis of 2D-photonic crystal based eight channel WavelengthDivision Demultiplexer. Optik 127(20):8819–8826

    Article  Google Scholar 

  30. Joannopoulos D, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    Google Scholar 

  31. Kannaiyan V, Kumar Dhamodharan S, Savarimuthu R (2016) Investigation on modified quasi-square PCRR based demultiplexer for WDM applications. Opt Quant Electron 48(393):1–12

    Google Scholar 

  32. Johnson SG, Joannopolous JD (2001) Block-iterative frequencydomain methods for Maxwell’s equations in a planewave basis. Opt Express 8:173–190

    Article  CAS  PubMed  Google Scholar 

  33. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F, Andalib A (2015) Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J Opt Commun 36(2):109–114

    Article  Google Scholar 

  34. Talebzadeh R, Soroosh M, Kavian YS, Mehdizadeh F (2017) All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon Netw Commun 34(2):248–257

    Article  Google Scholar 

  35. Kannaiyana V, Savarimuthua R, Dhamodharana SK (2018) Review investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer. Opto-Electronics Review 26:108–115

    Article  Google Scholar 

  36. Venkatachalam K, Sriram Kumar D, Robinson S (2017) Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photon Netw Commun 34(1):100–110

    Article  Google Scholar 

  37. Alipour-Banaei H, Mehdizadeh F (2014) Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optic 124:2639–2644

    Google Scholar 

  38. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F (2015) Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw Commun 29(2):146–150

    Article  Google Scholar 

  39. Rajarajan Balaji V, Murugan M, Robinson S, Nakkeeran R (2017) Design and optimization of photonic crystal based eight channel dense wavelength division multiplexing demultiplexer using conjugate radiant neural network. Opt Quant Electron 49(198):1–15

    Google Scholar 

  40. Alipour-Banaei H, Mehdizadeh F, Serajmohammadi S (2013) A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik 124:5964–5967

    Article  Google Scholar 

  41. Talebzadeh R, Soroosh M, Kavian YS, Mehdizadeh F (2017) Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Optik 140:331–337

    Article  CAS  Google Scholar 

  42. Mohammadi M, Seifouri M (2018) Numerical simulation of all optical demultiplexer based on pillar photonic crystal ring resonators. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 32(2):e2527

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Shahid Rajaee Teacher Training University under contract number 11521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Seifouri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Fallahi, V. & Seifouri, M. Optimization and Performance Analysis of All-Optical Compact 4 and 5-Channel Demultiplexers Based on 2D PC Ring Resonators for Applications in Advanced Optical Communication Systems. Silicon 13, 2619–2629 (2021). https://doi.org/10.1007/s12633-020-00614-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00614-y

Keywords

Navigation