Skip to main content
Log in

Role of Silicon Coupling Grafted Natural Fillers on Visco-Elastic, Tensile-Fatigue and Water Absorption Behavior of Epoxy Resin Composite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work investigates the influence of silicon based coupling agents on visco-elastic properties of natural filler dispersed epoxy resin composites. Also this work attempts to explore the possibility of using silicon coupling grafted natural fillers as potential fillers for polymer composites. Ground nut shell power (GS powder), rice husk and saw dust were selected as reinforcement for this current investigation. The powders were silane surface grafted using silicon coupling agent 3-Aminopropyltrimethoxysilane via aqueous solution method. The composites were prepared via gravity casting method and post cured at 120°C. The visco-elastic behavior of silane surface modified rice-husk-epoxy natural filler composite gives improved results in storage modulus, and loss tangent. Similarly, the fatigue results revealed that the composites made with 10 vol.% of silane surface treated rice husk filler gives maximum fatigue life cycle of 1310. The sessile drop results show that the silane surface modified epoxy composites retains higher absorption resistance by offering higher contact angle even after the natural fillers are filled. Scanning electron microscope images revealed highly reacted phase and improved dispersion of natural fillers with matrix. These natural fillers strengthen epoxy composites could be right choice to replace many metallic based materials in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soltani S, Ebrahimian-Hosseinabadi M, Zargar Kharazi A (2016) Chitosan/graphene and poly(D, L-lactic-co-glycolic acid)/graphene nano-composites for nerve tissue engineering. Tissue Eng Regen Med 13:684–690. https://doi.org/10.1007/s13770-016-9130-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. GUPTA A, SINGH H, WALIA RS (2016) Hybrid filler composition optimization for tensile strength of jute fibre-reinforced polymer composite. Bull Mater Sci 39:1223–1231. https://doi.org/10.1007/s12034-016-1248-1

    Article  CAS  Google Scholar 

  3. Rachchh NV, Misra RK, Roychowdhary DG (2015) Effect of red mud filler on mechanical and buckling characteristics of coir fibre-reinforced polymer composite. Iran Polym J 24:253–265. https://doi.org/10.1007/s13726-015-0317-4

    Article  CAS  Google Scholar 

  4. Li M, Tang C, Zhang L, Shang B, Zheng S, Qi S (2018) A thermally conductive and insulating epoxy polymer composite with hybrid filler of modified copper nanowires and graphene oxide. J Mater Sci Mater Electron 29:4948–4954. https://doi.org/10.1007/s10854-017-8454-5

    Article  Google Scholar 

  5. Arunprakash VR, Viswanathan R (2019) Fabrication and characterization of Echinoidea spike particles and Kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Composites: A 118:317–326

    Article  CAS  Google Scholar 

  6. Parivendhan Inbakumar and S. Ramesh (2017) Mechanical, wear and thermal behaviour of hemp fibre/egg shell particle reinforced epoxy resin bio composite. Trans Can Soc Mech Eng. https://doi.org/10.1139/tcsme-2017-0079

  7. Song P, Qiu H, Wang L, Liu X, Zhang Y, Zhang J, Kong J (2020) Junwei Gu. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance, Sustainable Materials and Technologies, p e00153

    Google Scholar 

  8. Yang X, Zhu J, Dong Y, Zhang J, Guo Y, Zhong X, Kong J, Junwei G (2020) High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos Part B 185:107784

    Article  CAS  Google Scholar 

  9. Han Y, Shi X, Yang X, Guo Y, Zhang J, Kong J, Junwei G (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944

    Article  CAS  Google Scholar 

  10. Yang X, Fan S, Li Y, Guo Y, Li Y, Ruan K, Zhang S, Zhang J, Kong J, Junwei G (2020) Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos A: Appl Sci Manuf 128:105670

    Article  CAS  Google Scholar 

  11. Zhang R, Shi X, Tang L et al (2020) Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chin J Polym Sci. https://doi.org/10.1007/s10118-020-2391-0

  12. Lin T, Dang J, He M, Li J, Kong J, Tang Y, Junwei G (2019) Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos Sci Technol 169:120–126

    Article  Google Scholar 

  13. Huang Z, Jiang X (2013) Micro/nano-scale materials and structures for constructing neuronal networks and addressing neurons. J Mater Chem C 1:7652–7662

    Article  CAS  Google Scholar 

  14. Lin T, He M, Na X, Guan X, Zhang R, Zhang J, Junwei G (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Composites Communications 16:5–10 ISSN 2452-2139

    Article  Google Scholar 

  15. Merizgui T, Hadjadj A, Kious M, Arun Prakash VR (2020) Effect of temperature and frequency on microwave shielding behaviour of functionalized Kenaf fibre-reinforced MWCNTs/iron(III) oxide modified epoxy hybrid composite. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00179-y

  16. Parthipan N, Ilangkumaran M, Maridurai T, Prasanna SC (2020) Effect of Silane treated silicon (IV) oxide nanoparticle addition on mechanical, impact damage and drilling characteristics of kenaf fibre-reinforced epoxy composite. Silicon 12:459–467. https://doi.org/10.1007/s12633-019-00138-0

    Article  CAS  Google Scholar 

  17. Ebrahimnezhad-Khaljiri H, Eslami-Farsani R, Khosravi H, Shahrabi-Farahani A (2019) Improving the flexural properties of E-glass fibers/epoxy Isogrid stiffened composites through addition of 3-Glycidoxypropyltrimethoxysilane functionalized Nanoclay. Silicon. https://doi.org/10.1007/s12633-019-00346-8

  18. Venkateshwaran N, Elaya Perumal A, Arwin Raj RH (2012) Mechanical and dynamic mechanical analysis of woven Banana/epoxy composite. J Polym Environ 20:565–572. https://doi.org/10.1007/s10924-011-0410-5

    Article  CAS  Google Scholar 

  19. Sakai T, Somiya S (2011) Analysis of creep behavior in thermoplastics based on visco-elastic theory. Mech Time-Depend Mater 15:293–308. https://doi.org/10.1007/s11043-011-9136-y

    Article  CAS  Google Scholar 

  20. V R, A.P., V, J., T, M. et al. (2019) Effect of silicon coupling grafted ferric oxide and e-glass fibre in thermal stability, wear and tensile fatigue behaviour of epoxy hybrid composite. Silicon. https://doi.org/10.1007/s12633-019-00347-7

  21. Murugan MA, Jayaseelan V, Jayabalakrishnan D, Maridurai T, Kumar SS, Ramesh G, Prakash VRA (2019) Low velocity impact and mechanical behaviour of shot blasted SiC wire-mesh and Silane-treated Aloevera/hemp/flax-reinforced SiC whisker modified epoxy resin composites. Silicon. https://doi.org/10.1007/s12633-019-00297-0

  22. Arun prakash VR, Rajadurai A (2016) Radio frequency shielding behaviour of silane treated Fe2O3/E-glass fibre reinforced epoxy hybrid composite. Appl Phys A Mater Sci Process 122, 875. https://doi.org/10.1007/s00339-016-0411-2

  23. Vimalanathan P, Venkateshwaran N, Srinivasan SP, Santhanam V, Rajesh M (2018) Impact of surface adaptation and Acacia nilotica biofiller on static and dynamic properties of sisal fiber composite. Int J Polym Anal Charact 23(2):99–112

    Article  CAS  Google Scholar 

  24. Palanikumar V, Narayanan V, Vajjiram S (2018) Experimental investigation of mechanical and viscoelastic properties of acacia Nilotica filler blended polymer composite. Polym Compos 39(7):2535–2546

    Article  CAS  Google Scholar 

  25. Vimalanathan P, Venkateshwaran N, Santhanam V (2016) Mechanical, dynamic mechanical, and thermal analysis of Shorea robusta-dispersed polyester composite. Int J Polym Anal Charact 21(4):314–326

    Article  CAS  Google Scholar 

  26. Nagamadhu M, Jeyaraj P, Mohan Kumar GC (2020) Influence of textile properties on dynamic mechanical behavior of epoxy composite reinforced with woven sisal fabrics. Sādhanā 45:14. https://doi.org/10.1007/s12046-019-1249-z

    Article  CAS  Google Scholar 

  27. Kabir A, Hoa SV (2011) Improvement of vibration damping and flexural fatigue property incorporating Nanoclay into glass/epoxy composite. In: Komorowski J (ed) ICAF 2011 structural integrity: influence of efficiency and green imperatives. Springer, Dordrecht

    Google Scholar 

  28. Kumar R, Kumar K, Bhowmik S (2018) Assessment and response of treated Cocos nucifera reinforced toughened epoxy composite towards fracture and viscoelastic properties. J Polym Environ 26:2522–2535. https://doi.org/10.1007/s10924-017-1150-y

    Article  CAS  Google Scholar 

  29. Emami Z, Meng Q, Pircheraghi G, Manas-Zloczower I (2015) Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose 22:3161–3176. https://doi.org/10.1007/s10570-015-0728-6

    Article  CAS  Google Scholar 

  30. Arun Prakash VR, Viswanathan R (2019) Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite. Int J Plast Technol 23:207–217. https://doi.org/10.1007/s12588-019-09251-6

    Article  CAS  Google Scholar 

  31. Dinesh S, Kumaran P, Mohanamurugan S, Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Bhat KS (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27:9. https://doi.org/10.1007/s10965-019-1975-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suthan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthan, R., Jayakumar, V. & Gokuldass, R. Role of Silicon Coupling Grafted Natural Fillers on Visco-Elastic, Tensile-Fatigue and Water Absorption Behavior of Epoxy Resin Composite. Silicon 13, 1199–1207 (2021). https://doi.org/10.1007/s12633-020-00508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00508-z

Keywords

Navigation