Skip to main content
Log in

Enhancement of DC and Breakdown Performance on Single to Multi-Step Gate FP Using GaN-HEMT for High Power Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

AlGaN/GaN-HEMT with Single to Multi-step gate field plate is proposed in this work. The proposed device enhanced Drain current, breakdown voltage and shift in threshold voltage. The performance of proposed device is analyzed and compared with experimental step device with and without Field Plate (FP). Reduction of current collapse effects is proved with Multi Gate Step field Plate in AlGaN/GaN HEMTs. The performance of the devices is analyzed using Technological Computer Aided Design (TCAD). In the simulation, polarization, mobility, recombination and impact ionization models are used. The electric field, potential and current density of the GaN-HEMT are analyzed. From the TCAD simulation, GaN-HEMT with increment in-step FP yields higher breakdown voltage than that of other FP techniques. Hence, the proposed GaN-HEMT is an outstanding candidate for future high power application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cucak,M. Vasic, O. Garcia, “Physical modeling and optimization of a GaN HEMT design with a field plate structure for high frequency application”, IEEE Energ Conv Cong and Exp,(2014)

  2. Lanzieri, C., Crispoldi, F., Dominijanni, D., Lucibello, A., Nanni, A., Natali, M., … Leonardo, S. A. (2005). Leonardo company technological solutions for GaN based radars

  3. Fornetti, F. (2010). Characterisation and performance optimisation of GaN HEMTs and amplifiers for radar applications, (march)

  4. Chu R, Corrion A, Chen M, Li R, Wong D, Zehnder D, Boutros K (2011) 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on -resistance. IEEE Electron Device Lett 32(5):632–634. https://doi.org/10.1109/LED.2011.2118190

    Article  CAS  Google Scholar 

  5. Ahsan, S. A. (2017). Modeling and analysis of GaN HEMTs for power-electronics and RF applications modeling and analysis of GaN HEMTs for power-electronics and RF applications Indian Institute of Technology Kanpur

  6. Mao W, Fan JS, Du M, Zhang JF, Zheng XF, Wang C et al (2016) Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate. Chin Phys B 25(12):127305. https://doi.org/10.1088/1674-1056/25/12/127305

    Article  CAS  Google Scholar 

  7. Liao, B., Zhou, Q., Qin, J., & Wang, H. (2019). Simulation of AlGaN/GaN HEMTs’ breakdown voltage enhancement using gate field-plate, source field-plate and drain field plate. Electronics (Switzerland), 8(4). https://doi.org/10.3390/electronics8040406

  8. Hacinamiento, E. L., & El, E. N. (2014). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title, 68–80

  9. Wu Y, Jacob-Mitos M, Moore ML, Heikman S (2008) A 97.8% efficient GaN HEMT boost converter with 300-W output power at 1 MHz. IEEE Electron Device Lett 29(8):824–826. https://doi.org/10.1109/LED.2008.2000921

  10. Radhakrishna, U. (2016). Modeling gallium-nitride based high electron Mobility transistors : linking device physics to high voltage and high frequency circuit design, 291. Retrieved from https://dspace.mit.edu/handle/1721.1/105951

  11. Japanese, W., & Cooke, M. (2014). Developing market for normally-off nitride power electronics, 7(9), 82–87

  12. Drahansky, M., Paridah, M. ., Moradbak, A., Mohamed, A. ., Owolabi, F. abdulwahab taiwo, Asniza, M., & Abdul Khalid, S. H. . (2016). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1%. Intech, i(tourism), 13. https://doi.org/10.5772/57353

  13. Faculty, S., & Engineering, E. (2016). Innovative approaches for AlGaN / GaN-based technology, (February)

  14. Kwak HT, Chang SB, Kim HJ, Jang KW, Yoon HS, Lee SH et al (2018) Operational improvement of AlGaN/GaN high electron mobility transistor by an inner field-plate structure. Appl Sci (Switzerland) 8(6):1–14. https://doi.org/10.3390/app8060974

    Article  CAS  Google Scholar 

  15. Jiang S, Lee KB, Guiney I, Miaja PF, Zaidi ZH, Qian H, Wallis DJ, Forsyth AJ, Humphreys CJ, Houston PA (2017) All-GaN-integrated Cascode Heterojunction field effect transistors. IEEE Trans Power Electron 32(11):8743–8750. https://doi.org/10.1109/TPEL.2016.2643499

    Article  Google Scholar 

  16. Yu, G., Wang, Y., Cai, Y., Dong, Z., Zeng, C., & Zhang, B. (2013). Dynamic Characterizations of AlGaN / GaN HEMTs With Field Plates Using a Double-Gate Structure, 34(2), 217–219

  17. Suh, C. S., Dora, Y., Fichtenbaum, N., McCarthy, L., Keller, S., & Mishra, U. K. (2006). High-breakdown enhancement-mode AlGaN/GaN HEMTs with integrated slant field-plate. Technical digest - international Electron devices meeting, IEDM, 1(c). https://doi.org/10.1109/IEDM.2006.346931

  18. Ma J, Matioli E (2017) Slanted tri-gates for high-voltage GaN power devices. IEEE Electron Device Lett 38(9):1305–1308

    Article  CAS  Google Scholar 

  19. Kobayashi K, Hatakeyama S, Yoshida T, Piedra D, Palacios T, Otsuji T, Suemitsu T (2014) Current collapse suppression in AlGaN/GaN HEMTs by means of slant field plates fabricated by multi-layer SiCN. Solid State Electron 101(10):63–69. https://doi.org/10.1016/j.sse.2014.06.022

    Article  CAS  Google Scholar 

  20. Dora Y, Chakraborty A, McCarthy L, Keller S, Denbaars SP, Mishra UK (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett 27(9):713–715. https://doi.org/10.1109/LED.2006.881020

    Article  CAS  Google Scholar 

  21. Berzoy, A., Lashway, C. R., Moradisizkoohi, H., & Mohammed, O. A. (2017). Breakdown voltage improvement and analysis of GaN HEMTs through field plate inclusion and substrate removal. 2017 IEEE 5th workshop on wide Bandgap power devices and applications, WiPDA 2017, 2017-December, 138–142. https://doi.org/10.1109/WiPDA.2017.8170536

  22. Kobayashi K, Hatakeyama S, Yoshida T, Piedra D, Palacios T, Otsuji T, Suemitsu T (2014) Current collapse suppression in AlGaN/GaN HEMTs by means of slant field plates fabricated by multi-layer SiCN. Solid State Electron 101:63–69. https://doi.org/10.1016/j.sse.2014.06.022

    Article  CAS  Google Scholar 

  23. Nirmal D, Arivazhagan L, Augustine Fletcher AS, Ajayan J, Prajoon P (2018) Current collapse modeling in AlGaN/GaN HEMT using smallsignal equivalent circuit for high power application. Superlattice Microst 113:810–820

    Article  CAS  Google Scholar 

  24. Arivazhagan L, Nirmal D, Godfrey D, Ajayan J, Prajoon P, Augustine Fletcher AS, Jone AAA, Kumar JSR (2019) Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications. Int J Electron Commun (AEÜ) 108:189–194

    Article  Google Scholar 

  25. Sentaurus™ Device User Guide Version K-2015.06, June 2015

Download references

Acknowledgements

We Acknowledge the Taiwan Semiconductor Research Institute (TSRI), Taiwan for use of their laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nirmal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godfrey, D., Nirmal, D., Godwinraj, D. et al. Enhancement of DC and Breakdown Performance on Single to Multi-Step Gate FP Using GaN-HEMT for High Power Applications. Silicon 13, 1177–1183 (2021). https://doi.org/10.1007/s12633-020-00503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00503-4

Keywords

Navigation