Skip to main content
Log in

Analysis of AlGaN/GaN HEMT and Its Operational Improvement Using a Grated Gate Field Plate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper investigates the DC and RF performance of a gate field plate (GFP) and proposed grated gate field plate (GGFP) AlGaN/GaN high electron mobility transistor (HEMT) with a gate length of \(\mathrm{0.25}\) \(\upmu \) m through experimentally calibrated simulations. The GFP HEMT technology enhances breakdown voltage but influences the capacitive nature of the device with parasitic capacitance, particularly Miller’s capacitance, into action reducing its radio frequency and switching performance. To improve the electrical operation of a GFP HEMT, a grated gate field plate (GGFP) HEMT structure is proposed which exhibits operational improvements in terms of output current (1 A/mm), transconductance (350 mS/mm), and at the same time, reduces the parasitic capacitance effectively. We observe a 60% improvement in cut off frequency of the proposed GGFP HEMT (28.3 GHz) with respect to GFP HEMT (17.6 GHz) with little decrease in breakdown voltage. This study shows that the proposed device structure (GGFP HEMT) due to its effective capacitance reduction has better suitability and is a viable technique for future radio frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. U.K. Mishra, L. Shen, T.E. Kazior, and Y. Wu, Proceedings of the IEEE 96, 287 (2008)

  2. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999)

    Article  CAS  Google Scholar 

  3. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, and U.K. Mishra, App. Phys. Lett. 77, 250 (2000)

    Article  CAS  Google Scholar 

  4. D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, and G. Borghs, Appl. Phys. Lett. 97, 113501 (2010)

    Article  Google Scholar 

  5. T. Kabemura, S. Ueda, Y. Kawada, and K. Horio, IEEE Trans. Electron Devices 65, 3848 (2018)

    Article  CAS  Google Scholar 

  6. N. Maeda, M. Hiroki, N. Watanabe, Y. Oda, H. Yokoyama, T. Yagi, T. Makimoto, T. Enoki, and T. Kobayashi, Jpn. J. Appl. Phys. 46, 547 (2007)

    Article  CAS  Google Scholar 

  7. Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, H. Fung, S. Kim, and M. Micovic, IEEE Electron Device Lett. 36, 549 (2015)

    Article  CAS  Google Scholar 

  8. M.A. Alim, A.A. Rezazadeh, and C. Gaquiere, Semicond. Sci. and Technol. 30, 125005 (2015)

    Article  Google Scholar 

  9. A.M. Bhat, N. Shafi, and C. Periasamy, 3rd International Conference on Electronics, Materials Engineering NanoTechnology (IEMENTech), (2019), p.1.

  10. S. Karmalkar, and U.K. Mishra, IEEE trans. Electron Devices 48, 1515 (2001)

    Article  CAS  Google Scholar 

  11. M. Amit, D.S. Rawal, S. Sharma, S. Kapoor, R. Liashram, R.K. Chaubey, S. Vinayak, and R.K. Sharma, Defence Sci. J. 68(3), 290 (2018)

    Article  CAS  Google Scholar 

  12. Y.W. Lian, Y.S. Lin, H.C. Lu, Y.C. Huang, and S.S.H. Hsu, IEEE Trans. Electron Devices 62(2), 519 (2015)

    Article  Google Scholar 

  13. E. Bahat-Treidel, O. Hilt, F. Brunner, V. Sidorov, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 57, 1208 (2010)

    Article  Google Scholar 

  14. J. Luo, S.-L. Zhao, Z.-Y. Lin, J.-C. Zhang, X.-H. Ma, and Y. Hao, Chinese Phys. Lett. 33, 067301 (2016)

    Article  Google Scholar 

  15. E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 57, 3050 (2017)

    Article  Google Scholar 

  16. E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 55(12), 3354 (2008)

    Article  CAS  Google Scholar 

  17. P. Murugapandiyan, A. Mohanbabu, V.R. Lakshmi, M. Wasim, and K.M. Sundaram, J. Electron Mater. 49(1), 524 (2020)

    Article  CAS  Google Scholar 

  18. A. Ray, S. Bordoloi, B. Sarkar, P. Agarwal, and G. Trivedi, J. Electron Mater. 49(3), 2018 (2020)

    Article  CAS  Google Scholar 

  19. K. Xu, phys. status solidi (a) 216(7), 1800868 (2019)

  20. D. Visalli, M. Van Hove, J. Derluyn, P. Srivastava, D. Marcon, J. Das, M.R. Leys, S. Degroote, K. Cheng, E. Vandenplas, M. Germain, and G. Borghs, IEEE Trans. Electron Devices 57, 3333 (2010)

    Article  CAS  Google Scholar 

  21. H.T. Kwak, S.B. Chang, H.-J. Kim, K.W. Jang, H. Yoon, S.H. Lee, J.W. Lim, and H.S. Kim, Appl. Sci. 8, 974 (2018)

    Article  Google Scholar 

  22. K.J. Cho, H.K. Ahn, S.I. Kim, D.M. Kang, J.M. Lee, B.G. Min, S.H. Lee, D.Y. Kim, H.S. Yoon, H.C. Kim, K.H. Lee, C.W. Ju, J.W. Lim, Y.H. Kwon, and E.S. Nam, J. Korean Phys. Soc. 67(4), 682 (2015)

    Article  CAS  Google Scholar 

  23. H. Huang, Y.C. Liang, G.S. Samudra, T. Chang, and C. Huang, IEEE Trans. Power Electron. 29, 2164 (2014)

    Article  Google Scholar 

  24. B. Liao, Q. Zhou, J. Qin, and H. Wang, Electronics 8(4), 406 (2019)

    Article  CAS  Google Scholar 

  25. N.K. Subramani, J. Couvidat, A.A. Hajjar, J. Nallatamby, R. Sommet, and R. Quere, IEEE Electron Device Lett. 5, 175 (2017)

    Article  CAS  Google Scholar 

  26. N.K. Subramani, J. Couvidat, A.A. Hajjar, J. Nallatamby, and R. Quere, IEEE J. Electron Devices Soc. 39, 107 (2018)

    Article  CAS  Google Scholar 

  27. W. Yao, L. Wang, F. Li, Y. Meng, S. Yang, and Z. Wang, Semicond. Sci. Technol. 34(12), 125006 (2019)

    Article  CAS  Google Scholar 

  28. A. Toprak, S. Osmanoglu, M. Ozturk, D. Yilmaz, Omer Cengiz, Ozlem Sen, B. Butun, S. Ozcan, and E. Ozbay, Semicond. Sci. and Technol. 33, 125017 (2018)

  29. K. Lee, K. Ko, S. Lee, and K. Yang, Asia-Pacific Microwave Conference, p. 1019 (2006).

  30. M.J. Uren, K.J. Nash, R.S. Balmer, T. Martin, E. Morvan, N. Caillas, S.L. Delage, D. Ducatteau, B. Grimbert, and J.C. De Jaeger, IEEE Trans. Electron Devices 53, 395 (2006)

    Article  CAS  Google Scholar 

  31. H. Chiu, C. Yang, H. Wang, F. Huang, H. Kao, and F. Chien, IEEE Trans. Electron Devices 60, 3877 (2013)

    Article  CAS  Google Scholar 

  32. G. Meneghesso, M. Meneghini, and E. Zanoni, Jpn. J. of Appl. Phys. 53, 100211 (2014)

    Article  Google Scholar 

  33. A. Zhang, L. Zhang, Z. Tang, X. Cheng, Y. Wang, K.J. Chen, and M. Chan, IEEE Trans. Electron Devices 61, 755 (2014)

    Article  CAS  Google Scholar 

  34. D. Cucak, M. Vasic, O. Garcia, Y. Bouvier, J. Oliver, P. Alou, J.A. Cobos, A. Wang, S. Martin-Horcajo, F. Romero, and F. Calle, IEEE Energy Conversion Congress and Exposition (ECCE) (2014), p. 2857

  35. D. Cucak, M. Vasi, O. Garca, J. Angel Oliver, P. Alou, J. Antonio Cobos, A. Wang, S. Martin-Horcajo, M.F.Romero, and F. Calle, IEEE Trans. on Power Electronics 32(3), 2189 (2017).

  36. K. Xu, J. Micromech. Microeng. 31, 054001 (2021)

    Article  CAS  Google Scholar 

  37. S. Aamir Ahsan, S. Ghosh, S. Khandelwal, and Y.S. Chauhan, IEEE Trans. Electron Devices, 64, 816, (2017).

  38. D.E. Ward, and R.W. Dutton, IEEE J. Solid-State Circuits 13, 703 (1978)

    Article  Google Scholar 

  39. K. Sharma, A. Dasgupta, S. Ghosh, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, IEEE International Conf. on Electron Devices and Solid-State Circuits (EDSSC), (2015), p.499, https://doi.org/10.1109/EDSSC.2015.7285160.

  40. P. Murugapandiyan, M.T. Hasan, V.R. Lakshmi, M. Wasim, J. Ajayan, N. Ramkumar, and D. Nirmal, Int. J. Electron. (2020). https://doi.org/10.1080/00207217.2020.1849819

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasif Mohammad Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, A.M., Shafi, N., Sahu, C. et al. Analysis of AlGaN/GaN HEMT and Its Operational Improvement Using a Grated Gate Field Plate. J. Electron. Mater. 50, 6218–6227 (2021). https://doi.org/10.1007/s11664-021-09151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09151-9

Keywords

Navigation