Skip to main content
Log in

Linearity Performance Analysis of Double Gate (DG) VTFET Using HDB for RF Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In recent low-power electronics industry, Tunnel field-effect transistors (TFETs) have shown the superior performance such as decreased leakage current and lower subthreshold slope (SS). Previously available research work have recognized the fact that the precise evaluation of linearity is critical in short channel devices. The linearity analysis of double gate vertical TFET using hetero-dielectric buried oxide (HDB) for high-frequency applications has been investigated in this paper. The aim of using double gate (DG), HDB and work-function engineering is to improve the linearity performance. This work comprises of the analysis of the linearity figure-of-merits in terms of third-order transconductance (gm3), VIP2VIP3, IMD3, IIP3 and 1-dB compression point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ionescu AM, Riel H (2011) Tunnel field effect transistors as energy efficient electronic switches. Nature 479:329–337

    Article  CAS  Google Scholar 

  2. Avci UE, Morris DH, Young IA (2015) Tunnel field-effect transistors: prospects and challenges. IEEE Journal of Electron Devices Society 3(3):88–95

    Article  Google Scholar 

  3. Singh S, Kondekar PN (2014) Dopingless super-steep impact ionisation MOS (dopingless-IMOS) based on work-function engineering. Electron Lett 50(12):888–889

    Article  CAS  Google Scholar 

  4. Kumar MJ, Janardhanan S (2013) Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. on Electron Devices 60(10):3285–3290

    Article  CAS  Google Scholar 

  5. Juyal, R., Chauhan. S.S.: 'TCAD simulation of Germanium source dopingless Tunnel FET', Proc. IEEE International conference on advance in computing, communication and automation, Dehradun, Uttarakhand, India, April 8–9, 2016

  6. Sharma N, Chauhan SS (2017) Dual metal drain Ge-source dopingless TFET with enhanced turn-ON steep subthreshold swing and high ON-current. Electron Lett 53(14):960–962

    Article  CAS  Google Scholar 

  7. Singh G, Amin SI, Anand S, Sarin RK (2016) Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattice Microst 92:143–156

    Article  CAS  Google Scholar 

  8. Chauhan, S.S, Sharma, N.: 'Enhancing analog performance and suppression of subthreshold swing using hetero-junctionless double gate TFETs', Superlattice Microst, 2017, 112, pp. 257–261

  9. Choi WY, Lee HK (2016) 'Demonstration of hetero-gate-dielectric tunneling field effect transistors (HG TFETs)', Nano convergence. https://doi.org/10.1186/s40580-016-0073-y

    Book  Google Scholar 

  10. Cui, N., Liang, R., Wang, J., Xu, J.: 'Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering, AIP Advances 2, 2012, https://doi.org/10.1063/1.4705398, pp. 022111(1)-022111(16)

  11. Li YC, Zhang HM, Hu HY, Zhang YM, Wang B, Zhou CY (2014) Double-gate tunnel field-effect transistor: gate threshold voltage modeling and extraction. J Cent South Univ 21:587–592

    Article  CAS  Google Scholar 

  12. Raad BR, Sharma D, Kondekar P, Nigam K, Baronia S (2017) DC and analog/RF performance optimisation of source pocket dual work function TFET. Int J Electron 104(12):1992–2006

    CAS  Google Scholar 

  13. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. on Electron Devices 57(9):2317–2319

    Article  Google Scholar 

  14. Kim, S.H., Kam, H., Hu, C., et al.: 'Germanium-source tunnel field effect transistors with record high ION/IOFF', VLSI Symposium Technical Digest, 2009, pp. 178–179

  15. Zhou G, Lu Y, Li R, Zhang Q, Hwang WS, Liu Q, Vasen T, Chen C, Zhu H, Kuo JM, Koswatta S, Kosel T, Wistey M, Fay P, Seabaugh A, Xing H (2011) Vertical InGaAs/InP tunnel FETs with tunneling normal to the gate. IEEE Electron Device Lett 32(11):1516–1518

    Article  CAS  Google Scholar 

  16. Seema, Chauhan, S.S.: 'Design of double gate vertical tunnel field effect transistor using HDB and its performance estimation', Superlattices and Microstructures, 2018, 117, pp. 1–8

  17. Seema, Chauhan, S.S.: 'A new design approach to improve DC, analog/RF and linearity metrics of Vertical TFET for RFIC design', Superlattices and Microstructures, 2018, 122, pp. 286–295

  18. Asthana PK (2015) High-performance 20 nm GaSb/InAs junctionless tunnel field effect transistor for low power supply. J Semicond 36(2):024003(1)–024003(6)

    Article  Google Scholar 

  19. Anju, Tirkey, S., Nigam, K., Pandey, S., Sharma, D., Kondekar, P (2017) Investigation of gate material engineering in junctionless TFET to overcome the trade-off between ambipolarity and RF/linearity metrics, Superlattices and Microstructures, pp. 1–9, https://doi.org/10.1016/j.spmi.2017.03.059

  20. Sahay S, Kumar MJ (2015) Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. on Electron Devices 62(11):3882–3886

    Article  Google Scholar 

  21. Lin YC, Chang EY, Yamaguchi H, Wu WC, Chang CY (2007) A δ-doped InGaP/InGaAs pHEMT with different doping profiles for device linearity improvement. IEEE Trans on Electron Devices 54(7):1617–1625

    Article  CAS  Google Scholar 

  22. Ravazi B (1998) RF Microelectronics. Prentice-Hall, New York

    Google Scholar 

  23. Narang R, Saxena M, Gupta RS, Gupta M (2011) Linearity and analog performance analysis of double gate tunnel FET: effect of temperature and gate stack. International Journal of VLSI design and Communication Systems 2(3):185–200

    Article  Google Scholar 

  24. Seema, and Chauhan S.S.: 'Performance investigation of electrode work-function engineered hetero-dielectric buried oxide vertical TFET', IET Circuits, Devices & Systems, 2019, 13, (7), pp. 1027–1031

  25. Sentaurus Device User Guide. [online]. Available: http://www.synopsys.com

  26. Seema C (2019) S.S.: 'Investigation of RF and linearity performance of electrode work-function engineered HDB vertical TFET'. Micro & Nano Letters 14(1):17–21

    Article  Google Scholar 

  27. Madan J, Chaujar R (2016) Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans Device Mater 16(2):227–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seema, Chauhan, S. Linearity Performance Analysis of Double Gate (DG) VTFET Using HDB for RF Applications. Silicon 13, 1121–1125 (2021). https://doi.org/10.1007/s12633-020-00499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00499-x

Keywords

Navigation