Skip to main content
Log in

Inserting Different Charge Regions in Power MOSFET for Achieving High Performance of the Electrical Parameters

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper a new lateral double diffused MOSFET is proposed which has better performance compared to the conventional MOSFET. The idea is applied by inserting two silicon windows in drift region near the drain and under this region. The window in the drift region has higher doping density that leads to reducing the on-resistance as an important parameter in LDMOSFETs. The silicon window in buried layer has higher thermal conductivity than insulator which leads to reducing the self heating effect. Moreover, inserting the windows leads to increasing the breakdown voltage. Improving the parameters in the proposed structure causes better drain current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghibaudo G (1988) New method for the extraction of MOSFET parameters. Electronics letters 24(9):543–545

    Article  Google Scholar 

  2. Wang B, Hellums JR, Sodini CG (1994) MOSFET thermal noise modeling for analog integrated circuits. IEEE journal of solid-state circuits 29(7):833–835

    Article  CAS  Google Scholar 

  3. Jindal RP (1984) Noise associated with distributed resistance of MOSFET gate structures in integrated circuits. IEEE transactions on Electron devices 31(10):1505–1509

    Article  Google Scholar 

  4. Akturk A, Goldsman N, Metze G (2005) Self-consistent modeling of heating and MOSFET performance in 3-D integrated circuits. IEEE transactions on Electron devices 52(11):2395–2403

    Article  Google Scholar 

  5. M.K. Anvarifard, A.A. Orouji, Enhancement of a Nanoscale novel Esaki tunneling diode source TFET (ETDS-TFET) for low-voltage operations, silicon, 2547-2556, 11 (6), (2019)

  6. Sakurai T, Newton AR (1990) Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE journal of solid-state circuits 25(2):584–594

    Article  Google Scholar 

  7. Sun SW, Tsui PGY (1995) Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation. IEEE journal of solid-state circuits 30(8):947–949

    Article  Google Scholar 

  8. T. Skotnicki, J.A. Hutchby, T.J. King, H.S.P. Wong, F. Boeuf, The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance, IEEE circuits and devices magazine, 16–26, 21 (1), (2005 ), The end of CMOS scaling

  9. Bruel M (1995) Silicon on insulator material technology. Electronics letters 31(14):1201–1202

    Article  CAS  Google Scholar 

  10. Cristoloveanu S, Williams S (1992) Point-contact pseudo-MOSFET for in-situ characterization of as-grown silicon-on-insulator wafers. IEEE Electron device letters 13(2):102–104

    Article  Google Scholar 

  11. Balestra F, Cristoloveanu S, Benachir M, Brini J, Elewa T (1987) Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron device letters 8(9):410–412

    Article  Google Scholar 

  12. McNutt TR, Hefner AR, Mantooth HA, Berning D, Ryu SH (2007) Silicon Carbide Power MOSFET Model and Parameter Extraction Sequence. IEEE Transactions on Power Electronics 22(2):353–363

    Article  Google Scholar 

  13. Ren Y, Xu M, Zhou J, Lee FC (2006) Analytical loss model of power MOSFET. IEEE transactions on power electronics 21(2):310–319

    Article  Google Scholar 

  14. Xiong Y, Sun S, Jia H, Shea P, Shen ZJ (2009) New physical insights on power MOSFET switching losses. IEEE transactions on power electronics 24(2):525–531

    Article  Google Scholar 

  15. Zareiee M (2019) A novel dual trench gate power device by effective drift region structure. Superlattice Microst 8-15:125

    Google Scholar 

  16. Mehrad M, Orouji AA (2013) Injected charges in partial SOI LDMOSFETs: a new technique for improving the breakdown voltage. Superlattice Microst 77-84:57

    Google Scholar 

  17. Fiorenza JG, Antoniadis DA, del Alamo JA (2001) RF power LDMOSFET on SOI. IEEE Electron device letters 22(3):139–141

    Article  CAS  Google Scholar 

  18. Zareiee M (2019) A new structure for lateral double diffused MOSFET to control the breakdown voltage and the on-resistance. Silicon 11(6):3011–3019

    Article  CAS  Google Scholar 

  19. B. Zhang, W. Wang, W. Chen, Z. Li, Z. Li, High-voltage LDMOS with charge-balanced surface low on-resistance path layer, IEEE Electron device letters, 849–851, 30 (8), (2009)

  20. Zhu Y, Liang YC, Xu S, Foo PD, Sin JKO (2001) Folded gate LDMOS transistor with low on-resistance and high transconductance. IEEE transactions on Electron devices 48(12):2917–2928

    Article  CAS  Google Scholar 

  21. Anvarifard MK, Orouji AA (2017) Stopping electric field extension in a modified nanostructure based on SOI technology-a comprehensive numerical study. Superlattice Microst 206-220:111

    Google Scholar 

  22. Anvarifard MK (2017) Creation of a new high voltage device with capable of enhancing driving current and breakdown voltage. Mater Sci Semicond Process 60-65:60

    Article  Google Scholar 

  23. Anvarifard MK (2016) Symmetrical SOI MESFET with a dual cavity region (DCR-SOI MESFET) to promote high-voltage and radio-frequency performances. Superlattice Microst 492-503:98

    Google Scholar 

  24. Anvarifard MK (2018) An impressive structure containing triple trenches for RF power performance (TT-SOI-MESFET). Journal of Computational Electronics 17(1):230–237

    Article  CAS  Google Scholar 

  25. Device simulator ATLAS, Silvaco International; 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Mehrad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrad, M. Inserting Different Charge Regions in Power MOSFET for Achieving High Performance of the Electrical Parameters. Silicon 13, 1107–1111 (2021). https://doi.org/10.1007/s12633-020-00493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00493-3

Keywords

Navigation