Skip to main content
Log in

A Thermoplastic Polyurethane /Nanosilica Composite via Melt Mixing Process and its Properties

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This investigation reports the preparation and properties of thermoplastic polyurethane/silica nanocomposite prepared via melt mixing process. In this case, nanosilica at different loading was mixed with a polyester-based thermoplastic polyurethane (TPU). The dispersion of nanofiller was studied by the SEM and TEM analyses. The nanocomposite with optimal dispersion of nanofiller has better filler-polymer interaction that has been confirmed by the FT-IR study. TPU with 1 phr of nanosilica loading showed better tensile properties. DSC study revealed that incorporation of fumed silica in the TPU matrix does not substantially affect the refinement of TPU crystallite, and thus resulted in an insignificant change in glass transition temperature (Tg) and crystalline melting temperature of the nanocomposite. TGA study also confirmed enhanced onset degradation temperature and maximum degradation temperature (Tmax) for optimal nanosilica composite. The final degradation temperature and char content also increased with an increase in fumed silica content. Water contact angle (WCA) study revealed that hydrophilicity of the nanocomposite increased with the incorporation of fumed silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrović ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16(5):695–836. https://doi.org/10.1016/0079-6700(91)90011-9

    Article  Google Scholar 

  2. Mishra AK, Nando GB, Chattopadhyay S (2008) Exploring preferential association of laponite and cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique. J Polym Sci B Polym Phys 46(21):2341–2354. https://doi.org/10.1002/polb.21566

    Article  CAS  Google Scholar 

  3. Haloi DJ, Singha NK (2011) Synthesis of poly(2-ethylhexyl acrylate)/clay nanocomposite by in situ living radical polymerization. J Polym Sci A Polym Chem 49(7):1564–1571. https://doi.org/10.1002/pola.24577

    Article  CAS  Google Scholar 

  4. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  5. Wypych G (2016) Handbook of fillers: fourth edition

  6. Maciá-Agulló TG, Fernández-García JC, Torró-palau A, Orgilés Barceló AC, Martín-Martínez JM (1995) Hydrophobic or hydrophilic Fumed silica as filler of polyurethane adhesives. J Adhes 50(4):265–277. https://doi.org/10.1080/00218469508014557

    Article  Google Scholar 

  7. Jaúregui-Beloqui B, Fernández-Garcı́a, JC, César Orgilés-Barceló A, Mar Mahiques-Bujanda M, Martı́n-Martı́nez JM (1999) Rheological properties of thermoplastic polyurethane adhesive solutions containing fumed silicas of different surface areas. Int J Adhes Adhes 19 (4):321–328. https://doi.org/10.1016/S0143-7496(99)00008-1

  8. Torró-Palau AM, Fernández-Garcı́a JC, César Orgilés-Barceló A, Martı́n-Martı́nez JM (2001) Characterization of polyurethanes containing different silicas. Int J Adhes Adhes 21 (1):1–9. https://doi.org/10.1016/S0143-7496(00)00021-X

  9. Bistričić L, Baranović G, Leskovac M, Bajsić EG (2010) Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane–silica nanocomposites. Eur Polym J 46(10):1975–1987. https://doi.org/10.1016/j.eurpolymj.2010.08.001

    Article  CAS  Google Scholar 

  10. Khudyakov IV, Zopf DR, Turro NJ (2009) Polyurethane Nanocomposites. Des Monomers Polym 12(4):279–290. https://doi.org/10.1163/156855509x448253

    Article  CAS  Google Scholar 

  11. Zhou S-X, Wu L-M, Sun J, Shen W-D (2003) Effect of nanosilica on the properties of polyester-based polyurethane. J Appl Polym Sci 88(1):189–193. https://doi.org/10.1002/app.11624

  12. Navarro-Bañón V, Vega-Baudrit J, Vázquez P, Martín-Martínez JM (2005) Interactions in Nanosilica-Polyurethane composites evidenced by plate-plate rheology and DMTA. Macromol Symp 221(1):1–10. https://doi.org/10.1002/masy.200550301

  13. Vega-Baudrit J, Sibaja-Ballestero M, Vázquez P, Torregrosa-Maciá R, Miguel Martín-Martínez J (2007) Properties of thermoplastic polyurethane adhesives containing nanosila with different specific surface area and silanol content. Int J Adhes Adhes 27(6):469–479. https://doi.org/10.1016/j.ijadhadh.2006.08.001

    Article  CAS  Google Scholar 

  14. Vega-Baudrit J, Navarro-Bañón V, Vázquez P, Martín-Martínez JM (2006) Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. Int J Adhes Adhes 26(5):378–387. https://doi.org/10.1016/j.ijadhadh.2005.06.004

  15. Nunes RCR, Pereira RA, Fonseca JLC, Pereira MR (2001) X-ray studies on compositions of polyurethane and silica. Polym Test 20(6):707–712. https://doi.org/10.1016/S0142-9418(01)00007-1

    Article  CAS  Google Scholar 

  16. Petrović ZS, Javni I, Waddon A, Bánhegyi G (2000) Structure and properties of polyurethane–silica nanocomposites. J Appl Polym Sci 76(2):133–151. https://doi.org/10.1002/(sici)1097-4628(20000411)76:2<133::aid-app3>3.0.co;2-k

    Article  Google Scholar 

  17. Chen Y, Zhou S, Chen G, Wu L (2005) Preparation and characterization of polyester/silica nanocomposite resins. Prog Org Coat 54(2):120–126. https://doi.org/10.1016/j.porgcoat.2004.03.013

    Article  CAS  Google Scholar 

  18. Chen Y, Zhou S, Yang H, Wu L (2005) Structure and properties of polyurethane/nanosilica composites. J Appl Polym Sci 95(5):1032–1039. https://doi.org/10.1002/app.21180

  19. Chen Y, Zhou S, Yang H, Gu G, Wu L (2004) Preparation and characterization of nanocomposite polyurethane. J Colloid Interface Sci 279(2):370–378. https://doi.org/10.1016/j.jcis.2004.06.074

    Article  CAS  PubMed  Google Scholar 

  20. Zhou S, Wu L, Sun J, Shen W (2002) The change of the properties of acrylic-based polyurethane via addition of nanosilica. Prog Org Coat 45(1):33–42. https://doi.org/10.1016/S0300-9440(02)00085-1

  21. Chen G, Zhou S, Gu G, Yang H, Wu L (2005) Effects of surface properties of colloidal silica particles on redispersibility and properties of acrylic-based polyurethane/silica composites. J Colloid Interface Sci 281(2):339–350. https://doi.org/10.1016/j.jcis.2004.08.100

    Article  CAS  PubMed  Google Scholar 

  22. Malaki M, Hashemzadeh Y, Karevan M (2016) Effect of nanosilica on the mechanical properties of acrylic polyurethane coatings. Prog Org Coat 101:477–485. https://doi.org/10.1016/j.porgcoat.2016.09.012

  23. Lučić Blagojević S, Buhin Z, Pustak A, Lukić Kovačić R (2012) Influence of nanosilica on the morphology, thermal and mechanical properties of polyurethane elastomer. J Appl Polym Sci 125(S1):E181–E190. https://doi.org/10.1002/app.36290

  24. Winberg P, Eldrup M, Maurer FHJ (2004) Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy. Polymer 45(24):8253–8264. https://doi.org/10.1016/j.polymer.2004.09.080

    Article  CAS  Google Scholar 

  25. Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nanosilica filled high density polyethylene composites. Polym Eng Sci 43(2):490–500. https://doi.org/10.1002/pen.10040

  26. Tanahashi M, Hirose M, Lee J-C, Takeda K (2006) Organic/inorganic nanocomposites prepared by mechanical smashing of agglomerated silica ultrafine particles in molten thermoplastic resin. Polym Adv Technol 17(11–12):981–990. https://doi.org/10.1002/pat.841

    Article  CAS  Google Scholar 

  27. Aso O, Eguiazábal JI, Nazábal J (2007) The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Composites Science and Technology 67(13):2854–2863. https://doi.org/10.1016/j.compscitech.2007.01.021

  28. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos Sci Technol 65(3):635–645. https://doi.org/10.1016/j.compscitech.2004.09.004

    Article  CAS  Google Scholar 

  29. Reddy CS, Das CK, Narkis M (2005) Propylene-ethylene copolymer nanocomposites: epoxy resin grafted nano-silica as a reinforcing filler. Polym Compos 26(6):806–812. https://doi.org/10.1002/pc.20145

    Article  CAS  Google Scholar 

  30. Arrighi V, McEwen IJ, Qian H, Serrano Prieto MB (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 44(20):6259–6266. https://doi.org/10.1016/S0032-3861(03)00667-0

    Article  CAS  Google Scholar 

  31. Liu Y, Kontopoulou M (2006) The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nano-silica. Polymer 47(22):7731–7739. https://doi.org/10.1016/j.polymer.2006.09.014

    Article  CAS  Google Scholar 

  32. Zhang Q, Yang H, Fu Q (2004) Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles. Polymer 45(6):1913–1922. https://doi.org/10.1016/j.polymer.2004.01.037

  33. Gómez-Sánchez E (2011) ATR-FTIR spectroscopy for the characterisation of magnetic tape materials, vol 8

  34. Corish PJ (1959) Identification and analysis of polyurethane rubbers by infrared spectroscopy. Anal Chem 31(8):1298–1306. https://doi.org/10.1021/ac60152a015

    Article  CAS  Google Scholar 

  35. Yu TL, Lin TL, Tsai YM, Liu WJ (1999) Morphology of polyurethanes with triol monomer crosslinked on hard segments. J Polym Sci B Polym Phys 37(18):2673–2681. https://doi.org/10.1002/(sici)1099-0488(19990915)37:18<2673::aid-polb11>3.0.co;2-n

    Article  CAS  Google Scholar 

  36. Behera PK, Mondal P, Singha NK (2018) Polyurethane with an ionic liquid crosslinker: a new class of super shape memory-like polymers. Polym Chem 9(31):4205–4217. https://doi.org/10.1039/c8py00549d

    Article  CAS  Google Scholar 

  37. Seymour RW, Cooper SL (1971) DSC studies of polyurethane block polymers. Journal of Polymer Science Part B: Polymer Letters 9(9):689–694. https://doi.org/10.1002/pol.1971.110090911

    Article  CAS  Google Scholar 

  38. Petrovic ZS, Yang L, Zlatanic A, Zhang W, Javni I (2007) Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci (105):2717–2727. https://doi.org/10.1002/app.26346

  39. Luo Z, Hong RY, Xie HD, Feng WG (2012) One-step synthesis of functional silica nanoparticles for reinforcement ofpolyurethane coatings. Powder Technol (218):23–30. https://doi.org/10.1016/j.powtec.2011.11.023

Download references

Acknowledgments

Chinmoy Saha is thankful to BHAVINI for the necessary permission to work in this program. The author is also thankful to Shri. Rajesh De, RTC, IIT Kharagpur for his valuable support. The author is grateful to Central Research Facility (CRF), IIT Kharagpur to provide essential facilities for the characterization of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil K. Singha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, C., Bahera, P.K., Raut, S.K. et al. A Thermoplastic Polyurethane /Nanosilica Composite via Melt Mixing Process and its Properties. Silicon 13, 1041–1049 (2021). https://doi.org/10.1007/s12633-020-00487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00487-1

Keywords

Navigation