Skip to main content
Log in

Free-Standing Porous Silicon Film Produced by a Pulsed Anodic Etching of n+-Silicon Substrate in an HF: HCl: C2H5 OH: H2O2:H2O Electrolyte: Characterization and Adsorption of Colchicine

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Porous silicon (PSi) has been established as a promising candidate for a variety of applications in many fields of science and technology. Currently, free-standing PSi is receiving an increasing attention for biomedical applications, such as drug delivery carriers and bio-sensing. In this study, fabrication of free-standing PSi film with attractive structural and optical properties for a prospective biomedical uses, is reported. The film is produced in the dark by a pulsed anodic etching of n+- type silicon substrate in an unconventional (HF: HCl: C2H5 OH: H2O2:H2O) electrolyte. The macro-porous nature of the produced film is revealed by scanning electron microscopy (SEM) imaging. X-ray diffraction (XRD) and Raman scattering investigations show both amorphous and nano-crystalline phases coexist in the produced film. On ageing it for two months, Fourier transformation infrared (FTIR) spectroscopy results reveal that the produced film exhibits the characteristic of efficiently oxidized PSi with a good stability. In addition to the strong S-band, the room temperature photoluminescence (PL) spectrum of the film exhibits a weaker F-band, which is attributed to the recombination in SiO2 allocated at surface defects. Moreover, the film adsorption of colchicine drug via immersion process has been investigated by FTIR and UV-spectrophotometric measurements. The results demonstrate that the colchicine is specifically and efficiently adsorbed, with adsorption capacity of around 33%. The results in this study suggest that our fabricated free-standing PSi film can be effectively utilized to prepare PSi nanoparticles for forthcoming drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canham L (2014) Handbook of porous silicon. Springer, Berlin

    Google Scholar 

  2. Korotcenkov G (2016) Porous silicon: from formation to applications: optoelectronics, microelectronics, and energy technology applications3rd edn. CRC Press, Boca Raton

    Google Scholar 

  3. Maniya NH, Patel SR, Murthy Z (2015). Appl Surf Sci 330:358–365

    Article  CAS  Google Scholar 

  4. Zhao Y, Gaur G, Retterer ST, Laibinis PE, Weiss SM (2016) Flow-Through Porous Silicon Membranes for Real-Time Label-Free Biosensing. Anal Chem 88:10940–10948

    Article  CAS  Google Scholar 

  5. Álvarez J, Bettotti P, Suárez I, Kumar N, Hill D, Chirvony V, Pavesi L, Martínez-Pastor J (2011) Birefringent porous silicon membranes for optical sensing. Opt Express 19:26106–26116

    Article  Google Scholar 

  6. Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009). Wires Nanomed Nanobi 1:568–581

    Article  CAS  Google Scholar 

  7. Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277

    Article  CAS  Google Scholar 

  8. Kale PG, Solanki CS (2010) Synthesis of si nanoparticles from freestanding porous silicon (PS) film using ultrasonication. IEEE. pp. 003692–003697

  9. López JAL, Román AG, Barojas EG, Gracia JF, Juárez JM, López JC (2014). Nanoscale Res Lett 9:571

    Article  Google Scholar 

  10. Nissinen T, Ikonen T, Lama M, Riikonen J, Lehto V-P (2016). Powder Technol 288:360–365

    Article  CAS  Google Scholar 

  11. Solanki C, Bilyalov R, Poortmans J, Celis J-P, Nijs J, Mertens R (2004). J Electrochem Soc 151:C307–C314

    Article  CAS  Google Scholar 

  12. Allongue P, Costa-Kieling V, Gerischer H (1993). J Electrochem Soc 140:1018–1026

    Article  CAS  Google Scholar 

  13. Frotscher U, Rossow U, Ebert M, Pietryga C, Richter W, Berger M, Arens-Fischer R, Münder H (1996). Thin Solid Films 276:36–39

    Article  CAS  Google Scholar 

  14. Fry NL, Boss GR, Sailor MJ (2014). Chem Mater 26:2758–2764

    Article  CAS  Google Scholar 

  15. Salem M, Sailor M, Harraz F, Sakka T, Ogata Y (2006). J Appl Phys 100:083520

    Article  Google Scholar 

  16. Pap AE, Kordás K, Tóth G, Levoska J, Uusimäki A, Vähäkangas J, Leppävuori S, George T (2005). Appl Phys Lett 86:041501

    Article  Google Scholar 

  17. Belogorokhov A, Enderlein R, Tabata A, Leite J, Karavanskii V, Belogorokhova L (1997). Phys Rev B 56:10276

    Article  CAS  Google Scholar 

  18. Yamani Z, Thompson WH, AbuHassan L, Nayfeh MH (1997). Appl Phys Lett 70:3404–3406

    Article  CAS  Google Scholar 

  19. Naddaf M, Almariri A (2014). Appl Phys A Mater Sci Process 116:1337–1345

    Article  CAS  Google Scholar 

  20. Naddaf M (2012). J Mater Sci Mater Electron 23:2173–2180

    Article  CAS  Google Scholar 

  21. Hou X-Y, H-L Fan X, Lei F-LZ, Li M-Q, Yu M-R, Wang X (1996) Appl Phys Letts 68: 2323–2325

  22. Zheng X, Pan J, Zhang F, Liu E, Shi W, Yan Y (2016). Chem Eng J 284:879–887

    Article  CAS  Google Scholar 

  23. Ossicini S, Pavesi L, Priolo F (2003) Light emitting silicon for microphotonics. Springer Science & Business Media

  24. Zou B, Wang J, Liu C, Zhang JZ, El-Sayed MA (2000). Phys Rev B 62:16595

    Article  CAS  Google Scholar 

  25. Gupta P, Colvin V, George S (1988). Phys Rev B 37:8234

    Article  CAS  Google Scholar 

  26. Borghesi A, Sassella A, Pivac B, Pavesi L (1993). Solid State Commun 87:1–4

    Article  CAS  Google Scholar 

  27. Ogata YH, Yoshimi N, Yasuda R, Tsuboi T, Sakka T, Otsuki A (2001). J Appl Phys 90:6487–6492

    Article  CAS  Google Scholar 

  28. Ogata YH, Kato F, Tsuboi T, Sakka T (1998). J Electrochem Soc 145:2439–2444

    Article  CAS  Google Scholar 

  29. Riikonen J, Salomäki M, van Wonderen J, Kemell M, Xu W, Korhonen O, Ritala M, MacMillan F, Salonen J, Lehto V-P (2012) Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Langmuir 28:10573–10583

    Article  CAS  Google Scholar 

  30. Fritsch E, Mihut L, Baibarac M, Baltog I, Ostrooumov M, Lefrant S, Wery J (2001). J Appl Phys 90:4777–4782

    Article  CAS  Google Scholar 

  31. Martín-Palma R, Pascual L, Herrero P, Martínez-Duart J (2005). Appl Phys Lett 87:211906

    Article  Google Scholar 

  32. Vasques A, Torchynska T, Polupan G, Matsumoto-Kuwabara Y, Khomenkova L, Shcherbyna L (2008) Size dependent photoluminescence of Si nano-crystals embedded in amorphous silicon. Trans Tech Publ. pp. 71–76

  33. Cisneros R, Pfeiffer H, Wang C (2010). Nanoscale Res Lett 5:686

    Article  CAS  Google Scholar 

  34. Kharin AY, Assilbayeva R, Kargina YV, Timoshenko VY (2019) Comparative analysis of silicon nanostructures by x-ray diffraction technique. IOP Publishing pp 012010

  35. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch Springer pp 387–409

  36. Islam MN, Kumar S (2001). Appl Phys Lett 78:715–717

    Article  CAS  Google Scholar 

  37. Richter H, Wang Z, Ley L (1981). Solid State Commun 39:625–629

    Article  CAS  Google Scholar 

  38. Edelberg E, Bergh S, Naone R, Hall M, Aydil ES (1997). J Appl Phys 81:2410–2417

    Article  CAS  Google Scholar 

  39. Pérez JM, Villalobos J, McNeill P, Prasad J, Cheek R, Kelber J, Estrera J, Stevens P, Glosser R (1992). Appl Phys Lett 61:563–565

    Article  Google Scholar 

  40. Sun Y, Miyasato T (1995). Jpn J Appl Phys 34:L1248

    Article  CAS  Google Scholar 

  41. Pusep Y, Rodrigues A, Galzerani J, Arce RD, Koropecki RR, Comedi D (2009). J Electrochem Soc 156:K215–K217

    Article  CAS  Google Scholar 

  42. Cullis AG, Canham LT, Calcott PDJ (1997). J Appl Phys 82:909–965

    Article  CAS  Google Scholar 

  43. Voloshina T, Zavaritskaya T, Kavetskaya I, Karavanskii V, Romashov D (2002). J Appl Spectrosc 69:275–278

    Article  CAS  Google Scholar 

  44. Jane A, Dronov R, Hodges A (2009) Voelcker NH. Trends Biotechnol 27:230–239

    Article  CAS  Google Scholar 

  45. Zhang F, Zheng X, Liu E, Yu L, Yan Y (2017). J Ind Eng Chem 46:397–403

    Article  CAS  Google Scholar 

  46. Siddiqui S, Dwivedi A, Singh P, Hasan T, Jain S, Prasad O, Misra N (2009). J Struct Chem 50:411–420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Prof. I. Othman the director general of the AECS and the head of molecular biology and biotechnology department for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naddaf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naddaf, M., Jarjour, R.A. Free-Standing Porous Silicon Film Produced by a Pulsed Anodic Etching of n+-Silicon Substrate in an HF: HCl: C2H5 OH: H2O2:H2O Electrolyte: Characterization and Adsorption of Colchicine. Silicon 13, 739–746 (2021). https://doi.org/10.1007/s12633-020-00478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00478-2

Keywords

Navigation