Skip to main content
Log in

Effect of Grain Modifier on Mechanical and Tribological Properties of Al-Si Alloy and Composite

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study investigates the effect of Strontium (Sr) grain modifier addition on Al-9Si alloy and B4C reinforced composite fabricated by two step gravity casting technique. The optimum level of Sr was identified as 0.08 wt.% for complete modification. The modified cast components were thermally treated by T6 temper to enhance the tribo-mechanical properties. Metallographic observation revealed the transformation of acicular Si grains to fine fibrous in as-cast condition, which later transformed to spheroidised eutectic Si after heat treatment. The combined effect of grain modification by Sr and the influence of spheroidised eutectic Si enhanced the mechanical properties. Heat treated modified composite exhibited superior tribological properties when compared to other components under varying applied normal loads and sliding distances. Worn mechanism of heat treated modified composite was observed to be minor delamination wear regime at high load (55 N) and sliding distance (1500 m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh J, Chauhan A (2016) Characterization of hybrid aluminum matrix composites for advanced applications–a review. J Mater Res Technol 5(2):159–169. https://doi.org/10.1016/j.jmrt.2015.05.004

    Article  CAS  Google Scholar 

  2. D Haber (2015) Lightweight materials for automotive applications: a review (no. 2015-36-0219). SAE Technical Paper. https://doi.org/10.4271/2015-36-0219

  3. Singh J, Chauhan A (2014) A review on sliding wear behaviour of aluminium matrix composites with hybrid reinforcements for automotive applications. Tribol Online 9(3):121–134. https://doi.org/10.2474/trol.9.121

    Article  Google Scholar 

  4. Singh T, Gangil B, Singh B, Verma SK, Biswas D, Fekete G (2019) Natural-synthetic fiber reinforced homogeneous and functionally graded vinylester composites: effect of bagasse-Kevlar hybridization on wear behavior. J Mater Res and Technol 8(6):5961–5971. https://doi.org/10.1016/j.jmrt.2019.09.071

    Article  CAS  Google Scholar 

  5. Gangwar S, Kukshal V, Patnaik A, Singh T (2013) Mechanical and fracture toughness behavior of TiO2-filled A384 metal alloy composites. Sci Eng Compos Mater 20(3):209–220. https://doi.org/10.1515/secm-2012-0143

    Article  CAS  Google Scholar 

  6. Dev S, Aherwar A, Patnaik A (2020) Material selection for automotive piston component using entropy-VIKOR method. Silicon 12(1):155–169. https://doi.org/10.1007/s12633-019-00110-y

    Article  CAS  Google Scholar 

  7. DP Myriounis, ST Hasan, TE Matikas (2008) Heat treatment and interface effects on the mechanical behavior of SiC-particle reinforced aluminium matrix composites. J ASTM Int 1–10. https://doi.org/10.1520/JAI101624

  8. Beroual S, Boumerzoug Z, Paillard P, Borjon-Piron Y (2019) Effects of heat treatment and addition of small amounts of cu and mg on the microstructure and mechanical properties of Al-Si-cu and Al-Si-mg cast alloys. J Alloys Compd 784:1026–1035. https://doi.org/10.1016/j.jallcom.2018.12.365

    Article  CAS  Google Scholar 

  9. Ul HMI, Anand A (2018) Microhardness studies on stir cast AA7075-Si3N4 based composites. Mater Today Proc 9:19916–19922. https://doi.org/10.1016/j.matpr.2018.06.357

    Article  CAS  Google Scholar 

  10. Jarfors AEW, Seifeddine S (2015) Metal casting, Handbook of Manufacturing Engineering and Technology. https://doi.org/10.1007/978-1-4471-4670-4

  11. Sjölander E, Seifeddine S (2010) The heat treatment of Al–Si–cu–mg casting alloys. J Mater Process Technol 210(10):1249–1259. https://doi.org/10.1016/j.jmatprotec.2010.03.020

    Article  CAS  Google Scholar 

  12. R Jojith, N Radhika (2019) Investigation of mechanical and Tribological behaviour of heat-treated functionally graded Al-7Si/B4C composite. Silicon 1-13. https://doi.org/10.1007/s12633-019-00294-3

  13. Hegde S, Prabhu KN (2008) Modification of eutectic silicon in Al–Si alloys. J Mater Sci 43(9):3009–3027. https://doi.org/10.1007/s10853-008-2505-5

    Article  CAS  Google Scholar 

  14. Xu C, Xiao W, Hanada S, Yamagata H, Ma C (2015) The effect of scandium addition on microstructure and mechanical properties of Al–Si–mg alloy: a multi-refinement modifier. Mater Charact 110:160–169. https://doi.org/10.1016/j.matchar.2015.10.030

    Article  CAS  Google Scholar 

  15. Lashgari HR, Emamy M, Razaghian A, Najimi AA (2009) The effect of strontium on the microstructure, porosity and tensile properties of A356–10% B4C cast composite. Mater Sci Eng A 517(1-2):170–179. https://doi.org/10.1016/j.msea.2009.03.072

    Article  CAS  Google Scholar 

  16. Garcia-Hinojosa JA, Gonzalez CR, Juárez JI, Surappa MK (2004) Effect of Sr addition on an Al–7Si–10 vol.% SiCp cast composites. Mater Sci Eng A 382(1–2):315–320. https://doi.org/10.1016/j.msea.2004.05.017

    Article  CAS  Google Scholar 

  17. Kumar N, Gautam G, Gautam RK, Mohan A, Mohan S (2016) Synthesis and characterization of TiB2 reinforced aluminium matrix composites: a review. J Inst Eng India Ser D 97(2):233–235

    Article  Google Scholar 

  18. Kerti I, Toptan F (2008) Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Mater Lett 62:1215–1218. https://doi.org/10.1016/j.matlet.2007.08.015

    Article  CAS  Google Scholar 

  19. Toptan F, Kerti I, Rocha LA (2012) Reciprocal dry sliding wear behaviour of B4Cp reinforced aluminium alloy matrix composites. Wear 290–291:74–85. https://doi.org/10.1016/J.WEAR.2012.05.007

    Article  Google Scholar 

  20. Goswami C, Bhat IK, Patnaik A, Singh T, Fekete G (2019) Fabrication of ceramic hip implant composites: influence of silicon nitride on physical. Mechanical and Wear Properties Silicon 1–9. https://doi.org/10.1007/s12633-019-00222-5

  21. Singh T, Patnaik A, Chauhan R, Chauhan P, Kumar N (2018) Physico-mechanical and tribological properties of nanoclay filled friction composite materials using Taguchi design of experiment approach. Polym Compos 39(5):1575–1581. https://doi.org/10.1002/pc.24101

    Article  CAS  Google Scholar 

  22. Singh T, Chauhan R, Patnaik A, Gangil B, Nain R, Kumar A (2018) Parametric study and optimization of multiwalled carbon nanotube filled friction composite materials using Taguchi method. Polym Compos 39(S2):E1109–E1117. https://doi.org/10.1002/pc.24576

    Article  CAS  Google Scholar 

  23. Kumar GV, Rao CSP, Selvaraj N (2011) Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. J Miner Mater Charact Eng 10(1):59

    Google Scholar 

  24. Rajeev VR, Dwivedi DK, Jain SC (2010) Dry reciprocating wear of Al–Si–SiCp composites: a statistical analysis. Tribol Int 43:1532–1541. https://doi.org/10.1016/j.triboint.2010.02.014

    Article  CAS  Google Scholar 

  25. Dahle AK, Nogita K, McDonald SD, Dinnis C, Lu L (2005) Eutectic modification and microstructure development in Al–Si alloys. Mater Sci Eng A 413:243–248. https://doi.org/10.1016/j.msea.2005.09.055

    Article  CAS  Google Scholar 

  26. Khan KB, Kutty TRG, Surappa MK (2006) Hot hardness and indentation creep study on Al–5% mg alloy matrix–B4C particle reinforced composites. Mater Sci Eng A 427(1–2):76–82. https://doi.org/10.1016/j.msea.2006.04.015

    Article  CAS  Google Scholar 

  27. Jojith R, Radhika N (2018) Fabrication of LM 25/WC functionally graded composite for automotive applications and investigation of its mechanical and wear properties. J Braz Soc Mech Sci Eng 40(6):292–213. https://doi.org/10.1007/s40430-018-1217-2

    Article  CAS  Google Scholar 

  28. Pasha MB, Kaleemulla M (2018) Processing and characterization of aluminum metal matrix composites: an overview. Rev Adv Mater Sci 56(1):79–90. https://doi.org/10.1515/rams-2018-0039

    Article  Google Scholar 

  29. Hashim J, Looney L, Hashmi MSJ (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92:1–7. https://doi.org/10.1016/S0924-0136(99)00118-1

    Article  Google Scholar 

  30. Inegbenebor AO, Bolu CA, Babalola PO, Inegbenebor AI, Fayomi OSI (2018) Aluminum silicon carbide particulate metal matrix composite development via stir casting processing. Silicon 10(2):343–347. https://doi.org/10.1007/s12633-016-9451-7

    Article  CAS  Google Scholar 

  31. Singh S, Singh R, Gill SS (2019) Investigations for surface hardness of aluminum matrix composites with hybrid reinforcement. T Indian I Metals 72(1):181–190. https://doi.org/10.1007/s12666-018-1472-z

    Article  CAS  Google Scholar 

  32. Abedi K, Emamy M (2010) The effect of Fe, Mn and Sr on the microstructure and tensile properties of A356–10% SiC composite. Mater Sci Eng A 527(16–17):3733–3740. https://doi.org/10.1016/j.msea.2010.03.063

    Article  CAS  Google Scholar 

  33. Hu Q, Zhao H, Ge J (2016) Microstructure and mechanical properties of (B4C+ Al3Ti)/Al hybrid composites fabricated by a two-step stir casting process. Mater Sci Eng A 650:478–482. https://doi.org/10.1016/j.msea.2015.10.041

    Article  CAS  Google Scholar 

  34. Jojith R, Radhika N (2019) Enhancement of mechanical and sliding wear properties of functionally graded Al-12Si-cu composites. Mater Res Express. https://doi.org/10.1088/2053-1591/ab1039

  35. Radhika N (2018) Comparison of the mechanical and wear behaviour of aluminium alloy with homogeneous and functionally graded silicon nitride composites. Sci Eng Compos Mater 25:261–271. https://doi.org/10.1515/secm-2015-0160

    Article  CAS  Google Scholar 

  36. Radhika N, Raghu R (2015) Evaluation of dry sliding wear characteristics of LM 13 Al/B4C composites. Tribo Ind 37:20–28

    Google Scholar 

  37. Lashgari HR, Sufizadeh AR, Emamy M (2010) The effect of strontium on the microstructure and wear properties of A356–10% B4C cast composites. Mater Des 31(4):2187–2195. https://doi.org/10.1016/j.matdes.2009.10.049

    Article  CAS  Google Scholar 

  38. Emamy M, Abdizadeh H, Lashgari HR, Najimi AA (2011) The effect of Sr and grain refining elements on the microstructure and tensile properties of A356-10% B4C metal matrix composite. Mech Adv Mater Struct 18(3):210–217. https://doi.org/10.1080/15376494.2010.516884

    Article  CAS  Google Scholar 

  39. Lu L, Dahle AK (2006) Effects of combined additions of Sr and Al TiB grain refiners in hypoeutectic Al–Si foundry alloys. Mater Sci Eng A 435:288–296. https://doi.org/10.1016/j.msea.2006.07.081

    Article  CAS  Google Scholar 

  40. Shabestari SG, Ghodrat S (2007) Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis. Mater Sci Eng A 467(1–2):150–158. https://doi.org/10.1016/j.msea.2007.05.022

    Article  CAS  Google Scholar 

  41. Ogris E (2002) Development of Al-Si-mg alloys for semi-solid processing and silicon spheroidization treatment (SST) for Al-Si-cast alloys. Doctoral dissertation, ETH Zurich

  42. Reddy AC, Zitoun E (2011) Tensile properties and fracture behavior of 6061/Al2O3 metal matrix composites fabricated by low pressure die casting process. Int J Mater Sci 6(2):147–157

    Google Scholar 

  43. Gowrishankar MC, Shravan R, Rahul AK, Sharma SS (2014) Effect of artificial aging on strength and Wear behaviour of Solutionized Aluminium 6061 alloy. Eng Technol Appl Sci 27–29

  44. Ibrahim MF, Samuel E, Samuel AM, Al-Ahmari AMA, Samuel FH (2011) Impact toughness and fractography of Al–Si–cu–mg base alloys. Mater Des 32:3900–3910. https://doi.org/10.1016/j.matdes.2011.02.058

    Article  CAS  Google Scholar 

  45. Radhika N, Vaishnavi A, Chandran GK (2014) Optimisation of dry sliding Wear process parameters for Aluminium hybrid metal matrix composites. Tribol Ind 36:188–194

    Google Scholar 

  46. Vieira AC, Sequeira PD, Gomes JR, Rocha LA (2009) Dry sliding wear of Al alloy/SiCp functionally graded composites: influence of processing conditions. Wear 267:585–592. https://doi.org/10.1016/j.wear.2009.01.041

    Article  CAS  Google Scholar 

  47. Kumar GV, Rao CSP, Selvaraj N (2012) Studies on mechanical and dry sliding wear of Al6061–SiC composites. Compos Part B Eng 43(3):1185–1191. https://doi.org/10.1016/j.compositesb.2011.08.046

    Article  CAS  Google Scholar 

  48. Ul HMI, Anand A (2018) Dry sliding friction and Wear behavior of AA7075-Si3N4 composite. Silicon 10:1819–1829. https://doi.org/10.1007/s12633-017-9675-1

    Article  CAS  Google Scholar 

  49. Veeravalli RR, Nallu R, Mohiuddin SMM (2016) Mechanical and tribological properties of AA7075–TiC metal matrix composites under heat treated (T6) and cast conditions. J Mater Res Technol 5:377–338. https://doi.org/10.1016/j.jmrt.2016.03.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are so thankful to AR&DB Organization for providing the financial support. [ARDB/01/2031877/M/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Radhika.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhika, N., Sasikumar, J. & Jojith, R. Effect of Grain Modifier on Mechanical and Tribological Properties of Al-Si Alloy and Composite. Silicon 13, 841–855 (2021). https://doi.org/10.1007/s12633-020-00476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00476-4

Keywords

Navigation