Skip to main content

Advertisement

Log in

Fabrication of Biogenic Silica Nanostructures from Sorghum bicolor Leaves for Food Industry Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Due to the large production of sorghum, the generation of associated agricultural residues, which contain high contents of silica, is inevitable. Also, these agricultural residues are not utilizing properly and it creates environmental pollution. Thus, we are utilizing the sorghum residues as a silica precursor to fabricating biogenic silica nanostructures using sequential processes. The physicochemical features of the synthesized BSNs, i.e., amorphous nature, surface functional groups, thermal stability, structure, and morphology, were analyzed using X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. The cytotoxic properties of the S. bicolor-derived BSNs were assessed using human colon carcinoma cells as an in vitro model and cell-based assays, including an 3–4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT) assay, and acridine orange/ethidium bromide staining (AO/EB). The silica content of S. bicolor leaves was around 9.34%. We observed peaks at 1089 cm−1 and 801 cm−1 in the FTIR spectra of BSNs that corresponded to asymmetric, symmetric, and bending vibrations of O–Si–O. The BSNs had spherical morphology with diameters of 30–90 nm and an amorphous nature. The cytotoxic analysis suggested that BSNs do not induce cell death in colon carcinoma cells. Overall, the results suggested that BSNs exhibit good compatibility in colon cells, and may be applicable as an anti-caking agent in the food sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R (2009) A facile method for production of high-purity silica xerogels from bagasse ash. Adv Powder Technol 20(5):468–472

    Article  CAS  Google Scholar 

  2. Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C 47:8–16

    Article  CAS  Google Scholar 

  3. Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA (2014) Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol 30(2):89–100

    Article  CAS  Google Scholar 

  4. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA (2015a) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41(1):275–281

    Article  CAS  Google Scholar 

  5. Athinarayanan J, Alshatwi AA, Periasamy VS, Al-Warthan AA (2015b) Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells. J Food Sci 80(2):N459–N464

    Article  CAS  Google Scholar 

  6. Athinarayanan J, Periasamy VS, Alhazmi M, Alshatwi AA (2017) Synthesis and biocompatibility assessment of sugarcane bagasse-derived biogenic silica nanoparticles for biomedical applications. J Biomed Mater Res B Appl Biomater 105(2):340–349

    Article  CAS  Google Scholar 

  7. Athinarayanan J, Periasamy VS, Alshatwi AA (2018) Fabrication and cytotoxicity assessment of cellulose nanofibrils using Bassia eriophora biomass. Int J Biol Macromol 117:911–918

    Article  CAS  Google Scholar 

  8. Balamurugan M, Saravanan S (2012) Producing nanosilica from Sorghum vulgare seed heads. Powder Technol 224:345–350

    Article  CAS  Google Scholar 

  9. Banerjee A, Mondal NK, Das D, Ray MR (2012) Neutrophilic inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning. Inflammation 35(2):671–683

    Article  CAS  Google Scholar 

  10. Blekas GA (2016) Encyclopedia of Food and Health In: Food additives: classification, uses and regulation, Academic Press, pp731-736

  11. Ch VS, Reddy R, Nagalakshmi D, Rao J (2012) Evaluation of sweet sorghum (Sorghum bicolor (L.) Moench) bagasse by chemical, in sacco and in vivo techniques in graded Murrah buffalo bulls. J Vet Adv 2(8):418–423

    Google Scholar 

  12. Chen H, Wang F, Zhang C, Shi Y, Jin G, Yuan S (2010) Preparation of nano-silica materials: the concept from wheat straw. J Non-Cryst Solids 356(50–51):2781–2785

    Article  CAS  Google Scholar 

  13. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100(7):1383–1389

    Article  CAS  Google Scholar 

  14. Foletto EL, Gratieri E, Oliveira LHD, Jahn SL (2006) Conversion of rice hull ash into soluble sodium silicate. Mater Res 9(3):335–338

    Article  CAS  Google Scholar 

  15. Guerriero G, Hausman JF, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    Article  Google Scholar 

  16. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5(7):5390–5399

    Article  CAS  Google Scholar 

  17. Knight CTG, Kinrade SD (2001) Silicon in Agriculture. Elsevier, Amsterdam, pp 57–84

    Book  Google Scholar 

  18. Kumar S, Milstein Y, Brami Y, Elbaum M, Elbaum R (2017) Mechanism of silica deposition in sorghum silica cells. New Phytol 213(2):791–798

    Article  CAS  Google Scholar 

  19. Lee JG, Cutler IB (1975) Formation of SiC from rice hulls. Am Ceram Soc Bull 54:195–198

    CAS  Google Scholar 

  20. Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115(1):87–92

    Article  CAS  Google Scholar 

  21. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nat. 440(7084):688

    Article  CAS  Google Scholar 

  22. Manchanda CK, Khaiwal R, Mor S (2017) Application of sol–gel technique for preparation of nanosilica from coal powered thermal power plant fly ash. J Sol-Gel Sci Technol 83(3):574–581

    Article  CAS  Google Scholar 

  23. Markovich O, Kumar S, Cohen D, Addadi S, Fridman E, Elbaum R (2015) Silicification in leaves of sorghum mutant with low silicon accumulation. Silicon. 11:2385–2391. https://doi.org/10.1007/s12633-015-9348-x

    Article  CAS  Google Scholar 

  24. Masarovič D, Slováková Ľ, Bokor B, Bujdoš M, Lux A (2012) Effect of silicon application on Sorghum bicolor exposed to toxic concentration of zinc. Biol. 67(4):706–712

    Google Scholar 

  25. Massoud MI, El-Razek AMA (2011) Suitability of Sorghum bicolor L. stalks and grains for bioproduction of ethanol. Ann Agric Sci 56(2):83–87

    Article  Google Scholar 

  26. Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18(1):20–52

    Article  Google Scholar 

  27. Mor S, Manchanda CK, Kansal SK, Ravindra K (2017) Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143:1284–1290

    Article  CAS  Google Scholar 

  28. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  29. Musić S, Filipović-Vinceković N, Sekovanić L (2011) Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 28(1):89–94

    Article  Google Scholar 

  30. Naqvi J, Shah FH, Mansha M (2011) Extraction of amorphous silica from wheat husk by using KMnO4. J Fac Eng Technol 18(1):39–46

    Google Scholar 

  31. Periasamy VS, Athinarayanan J, Al-Hadi AM, Al Juhaimi F, Mahmoud MH, Alshatwi AA (2015) Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environ Toxicol Pharmacol 39(1):176–186

    Article  CAS  Google Scholar 

  32. Pineda-Vásquez TG, Casas-Botero AE, Ramírez-Carmona ME, Torres-Taborda MM, Soares CH, Hotza D (2014) Biogeneration of silica nanoparticles from rice husk ash using Fusarium oxysporum in two different growth media. Ind Eng Chem Res 53(17):6959–6965

    Article  Google Scholar 

  33. Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440

    Article  Google Scholar 

  34. Rana PK, Swain SK, Sahoo PK (2004) Synthesis, characterization, and properties of intercalated poly (2-ethyl hexylacrylate)/silicate nanocomposites: XRD, TEM, IR, TGA, superabsorbency, pressure-sensitive adhesion, and biodegradation. J Appl Polym Sci 93:1007–1011

    Article  CAS  Google Scholar 

  35. Rorke D, Kana EG (2016) Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: optimization of saccharification, hydrogen production and preliminary scale up. Int J Hydrog Energy 41(30):12941–12952

    Article  CAS  Google Scholar 

  36. Simpson TL, Volcani BE (1981) Silicon and siliceous structures in biological systems. Springer-Verlag, New York

    Book  Google Scholar 

  37. Snyder GH, Matichenkov VV, Datnoff LE (2006) Silicon. Plant Nutrition. Taylor & Francis, Belle Glade, pp 551–562

    Chapter  Google Scholar 

  38. Thuadaij N, Nuntiya A (2008) Synthesis and characterization of nanosilica from rice husk ash prepared by precipitation method. J Nat Sci 7(1):59–65

    Google Scholar 

  39. Van Hoest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol 130:137–171

    Article  Google Scholar 

  40. Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L (2012) Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces 4(2):977–981

    Article  CAS  Google Scholar 

  41. Zemnukhova LA, Egorov AG, Fedorishcheva GA, Barinov NN, Sokol’nitskaya TA, Botsul AI (2006) Properties of amorphous silica produced from rice and oat processing waste. Inorg Mater 42(1):24–29

    Article  CAS  Google Scholar 

  42. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590-605.

  43. Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, Huang Y, Pan X, Wu C (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta pharm sin B. 8(2):165-77.

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research, King Saud University, Saudi Arabia [Research Group Project No. RGP-1435-044].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Alshatwi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athinarayanan, J., Jaafari, S.A.A.H., Periasamy, V.S. et al. Fabrication of Biogenic Silica Nanostructures from Sorghum bicolor Leaves for Food Industry Applications. Silicon 12, 2829–2836 (2020). https://doi.org/10.1007/s12633-020-00379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00379-4

Keywords

Navigation