Skip to main content
Log in

Effect of High-Temperature Annealing on Epitaxially Grown Ru Silicide Thin Films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Epitaxial growth was carried out to grow Ruthenium (Ru) silicide films. Films were grown on Si (100) substrate utilizing molecular beam epitaxy (MBE) method. Firstly, the low-temperature Si buffer layer was grown at relatively low temperature of 400 °C to accommodate lattice strain and Ru silicides epilayers were grown at 750 °C. Secondly, the effect of high-temperature annealing of 1050 °C on the grown film was depicted. To investigate the surface morphology as well as microstructural characteristics atomic force microscopy (AFM), transmission electron microscopy TEM, and x-ray diffraction (XRD) measurements were employed. Only the peaks of the Ru2Si3 phase were recorded in XRD measurements. X-ray photoelectron spectroscopy (XPS) was used to reveal the chemical and electronic composition of Ru silicide films, and a detectable change in the composition ratio toward the formation of Ru2Si3 was established after annealing. Additionally, Raman spectroscopy was utilized to evaluate the characteristics modes of entity phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sadia Y, Gelbstein Y (2012) Silicon-rich higher manganese silicides for thermoelectric applications. J Electron Mater 41(6):1504–1508

    Article  CAS  Google Scholar 

  2. Sadia Y, Dinnerman L, Gelbstein Y (2013) Mechanical alloying and spark plasma sintering of higher manganese silicides for thermoelectric applications. J Electron Mater 42(7):1926–1931

    Article  CAS  Google Scholar 

  3. Gelbstein Y et al (2014) Physical, mechanical, and structural properties of highly efficient nanostructured n-and p-silicides for practical thermoelectric applications. J Electron Mater 43(6):1703–1711

    Article  CAS  Google Scholar 

  4. Muthiah S et al (2018) Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique. Nanoscale 10(4):1970–1977

    Article  CAS  Google Scholar 

  5. Miyazaki Y et al (2018) Crystal structure and thermoelectric properties of lightly substituted higher manganese Silicides. Materials 11(6):926

    Article  Google Scholar 

  6. Chen X, Liang C (2019) Transition metal silicides: fundamentals, preparation and catalytic applications. Catal Sci Technol 9(18):4785–4820

    Article  CAS  Google Scholar 

  7. Haque E and Hossain MA (2017) Elastic, electronic, thermodynamic and transport properties of XOsSi (X= Nb, Ta) superconductors: A first-principles exploration. arXiv preprint arXiv:1709.02173

  8. Guo A et al (2016) Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate. Appl Surf Sci 384:487–491

    Article  CAS  Google Scholar 

  9. Capasso F (1987) Band-gap engineering: from physics and materials to new semiconductor devices. Science 235(4785):172–176

    Article  CAS  Google Scholar 

  10. Setojima K. et al. (2018) Growth of Ru2Si3 Polycrystalline Thin Films by Solid Phase Epitaxy in Ru-Si Amorphous Layers. In Defect and Diffusion Forum. Trans Tech Publ

  11. Fleurial, J.-P. and Bux SK (2016) Nanostructured silicide composites for thermoelectric applications. Google Patents

  12. Fedorov MI, Isachenko GN (2015) Silicides: materials for thermoelectric energy conversion. Jpn J Appl Phys 54(7S2):07JA05

    Article  Google Scholar 

  13. Zhao Y et al (2009) First-principles studies of the electronic and dynamical properties of monosilicides MSi (M= Fe, Ru, Os). EPL 85(4):47005

    Article  Google Scholar 

  14. Ruan B-B et al (2016) Superconductivity at 3.1 K in the orthorhombic ternary silicide ScRuSi. Supercond Sci Technol 30(2):025008

    Article  Google Scholar 

  15. Ramaswamy, N. and K.D. Prall (2016) Cross-point memory utilizing Ru/Si diode. Google Patents

  16. Dalapati GK et al (2015) Aluminium alloyed iron-silicide/silicon solar cells: a simple approach for low cost environmental-friendly photovoltaic technology. Sci Rep 5:17810

    Article  Google Scholar 

  17. Li J et al (2012) The electronic structure and optical properties of XSi (X= Fe, Ru, Os): a first principles investigation within the modified Becke–Johnson exchange potential plus LDA. J Alloys Compd 537:297–302

    Article  CAS  Google Scholar 

  18. Zhang C et al (2015) Prediction of stable ruthenium silicides from first-principles calculations: stoichiometries, crystal structures, and physical properties. ACS Appl Mater Interfaces 7(48):26776–26782

    Article  CAS  Google Scholar 

  19. Shudo K et al (2012) Microstructure and local density of states of ruthenium silicide on Si (001) surface. Mater Trans 53(9):1582–1585

    Article  CAS  Google Scholar 

  20. Xie J et al (2014) Selective deposition of Ru nanoparticles on TiSi2 nanonet and its utilization for Li2O2 formation and decomposition. J Am Chem Soc 136(25):8903–8906

    Article  CAS  Google Scholar 

  21. Hsu H-F et al (2013) Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction. Nanoscale Res Lett 8(1):224

    Article  Google Scholar 

  22. Chen J-Y et al (2013) Electroless deposition of Ru films on Si substrates with surface pretreatments. Thin Solid Films 529:426–429

    Article  CAS  Google Scholar 

  23. Premkumar PA et al (2011) CVD of Ru, Pt and Pt-based alloy thin films using ethanol as mild reducing agent. Mater Chem Phys 125(3):757–762

    Article  CAS  Google Scholar 

  24. Cottier R et al (2006) Molecular beam epitaxial growth of osmium silicides. J Vac Sci Technol B 24(3):1488–1491

    Article  CAS  Google Scholar 

  25. Lenssen D et al (2000) Epitaxial orientation of MBE grown Ru2Si3 films on Si (111) and Si (001). Thin Solid Films 368(1):15–21

    Article  CAS  Google Scholar 

  26. Costescu RM et al (2012) Epitaxial ferromagnetic samarium and samarium silicide synthesized on Si (001). J Mater Sci 47(20):7225–7234

    Article  CAS  Google Scholar 

  27. Borisenko VE (2000) Thin film silicide formation, in Semiconducting Silicides. Springer. p. 81–136

  28. Goroshko D et al (2013) Enhancement of near IR sensitivity of silicon-silicide based photodetectors. Phys Status Solidi C 10(12):1844–1846

    Article  CAS  Google Scholar 

  29. Rysbaev A et al (2014) Formation of nanosize silicides films on the Si (111) and Si (100) surfaces by low-energy ion implantation. Tech Phys 59(10):1526–1530

    Article  CAS  Google Scholar 

  30. Liu Y, Shao G, Homewood K (2001) Thermodynamic assessment of the Ru–Si and Os–Si systems. J Alloys Compd 320(1):72–79

    Article  CAS  Google Scholar 

  31. Imai Y, Watanabe A (2008) Energetic evaluation of the semiconducting mono-, sesqui-, and di-silicides of the 8th group elements (Fe, Ru and Os) using first-principle calculations. Intermetallics 16(6):769–773

    Article  CAS  Google Scholar 

  32. Borisenko VE (2013) Semiconducting Silicides: Basics, Formation, Properties. Vol. 39. Springer Science & Business Media

  33. Musschoot J et al (2010) Texture of atomic layer deposited ruthenium. Microelectron Eng 87(10):1879–1883

    Article  CAS  Google Scholar 

  34. Hussain A, Begum A, Rahman A (2013) Characterization of nanocrystalline lead sulphide thin films prepared by chemical bath deposition technique. Arab J Sci Eng 38(1):169–174

    Article  CAS  Google Scholar 

  35. Fouda A, El Shazly MD, Eid E (2014) Ultra-smooth and lattice relaxed ZnO thin films. Superlattice Microst 73:268–274

    Article  CAS  Google Scholar 

  36. Bornstein L (1982) Numerical data and functional relationships in science and technology. Semiconductors: Physics of Group IV Elements and III-V Compounds, New Series. 17

  37. Gas, P. and F. d’Heurle, 4 Diffusion in silicides, in Diffusion in Semiconductors. Springer. p. 1–38

  38. Jelenković EV et al (2015) XPS and TEM study of deposited and Ru–Si solid state reaction grown ruthenium silicides on silicon. Mater Sci Semicond Process 40:817–821

    Article  Google Scholar 

  39. Perrier C et al (1997) Synthesis, crystal structure, physical properties and Raman spectroscopy of transition metal phospho-silicides MSixPy (M= Fe, Co, Ru, Rh, Pd, Os, Ir, Pt). J Alloys Compd 262:71–77

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-005-662-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Fouda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, A.N., Eid, E.A. Effect of High-Temperature Annealing on Epitaxially Grown Ru Silicide Thin Films. Silicon 12, 2387–2393 (2020). https://doi.org/10.1007/s12633-019-00336-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00336-w

Keywords

Navigation