Skip to main content
Log in

Growth of (111)-oriented epitaxial magnesium silicide (Mg2Si) films on (001) Al2O3 substrates by RF magnetron sputtering and their properties

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Epitaxial Mg2Si films with (111) orientation were successfully grown at 300 °C on (001) Al2O3 insulating substrates by RF magnetron sputtering method. The optimal conditions for the epitaxial growth were identified as a low deposition rate and high deposition pressure above 60 mTorr. X-ray diffraction and transmission electron microscopy analysis confirmed the growth of (111)-oriented epitaxial Mg2Si films with the following relationship: (111) Mg2Si//(001)Al2O3. The conduction type of the epitaxial films was p-type up to 450 °C, which is same conduction type of the (110)-one-axis oriented ones. The electrical conductivity of the epitaxial films was lower than that of (110)-one-axis oriented ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kato T, Sago Y, Fujiwara H (2011) Optoelectronic properties of Mg2Si semiconducting layers with high absorption coefficients. J Appl Phys 110:063723. https://doi.org/10.1063/1.3642965

    Article  Google Scholar 

  2. Galkin NG, Vavanova SV, Maalsov AM, Galkin KN, Garasimenko AV, Kaidalova TA (2007) Solid phase growth and properties of Mg2Si films on Si(111). Thin Solid Films 515:8230–8236. https://doi.org/10.1016/j.tsf.2007.02.049

    Article  Google Scholar 

  3. Vantomme A, Langouche G, Mahan JE, Becker JP (2000) Growth mechanism and optical properties of semiconducting Mg2Si thin films. Microelectron Eng 50:237–242. https://doi.org/10.1016/S0167-9317(99)00287-7

    Article  Google Scholar 

  4. Tani J, Kido H (2015) Electrical properties of Mg2Si thin films on flexible polyimide substrates fabricated by radio-frequency magnetron sputtering. J Ceram Soc Jpn 123:298–301. https://doi.org/10.2109/jcersj2.123.298

    Article  Google Scholar 

  5. Kajikawa T, Shiba K, Shiraishi K, Ito T (1998) Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements. In: 17th International conference on thermoelectronics, pp. 362–369. https://doi.org/10.1109/ict.1998.740395

  6. McDonough WF, Sun S (1995) The composition of the earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  7. Udono H, Yamanaka Y, Uchikoshi M, Isshiki M (2013) Infrared photoresponse from pn-junction Mg2Si diodes fabricated by thermal diffusion. J Phys Chem Solids 74:311–314. https://doi.org/10.1016/j.jpcs.2012.10.005

    Article  Google Scholar 

  8. Zhao J, Liu Z, Reid J, Takarabe K, Iida T, Wang B, Yoshiya U, Tse JS (2015) Thermoelectric and electrical transport properties of Mg2Si multi-doped with Sb, Al and Zn. J Mater Chem A3:19774. https://doi.org/10.1039/C5TA03751D

    Article  Google Scholar 

  9. Liu W, Tang X, Sharp J (2010) Low-temperature solid state reaction synthesis and thermoelectric properties of high-performance and low-cost Sb-doped Mg2Si0.6Sn0.4. J Phys D Appl Phys 43:085406. https://doi.org/10.1088/0022-3727/43/8/085406

    Article  Google Scholar 

  10. Heller MW, Danielson GC (1962) Seebeck effect in Mg2Si single crystals. J Phys Chem Solids 23:601–610. https://doi.org/10.1016/0022-3697(62)90519-X

    Article  Google Scholar 

  11. Niwa Y, Todaka Y, Masuda T, Kawai T, Umemoto M (2009) Thermoelectric properties of Ca–Mg–Si alloys. Mater Trans 50:1725–1729. https://doi.org/10.2320/matertrans.MF200929

    Article  Google Scholar 

  12. Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T, Hamada N (2008) The thermoelectric properties of bulk crystalline n-and p-type Mg2Si prepared by the vertical Bridgeman method. J Appl Phys 104:013703. https://doi.org/10.1063/1.2946722

    Article  Google Scholar 

  13. Aizawa T, Song R, Yamamoto A (2005) Solid-state synthesis of thermoelectric materials in Mg–Si–Ge system. Mater Trans 46:1490–1496. https://doi.org/10.2320/matertrans.46.1490

    Article  Google Scholar 

  14. Song RB, Aizawa T, Sun JQ (2006) Synthesis of Mg2Si1−x Sn x solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing. Mater Sci Eng, B 136:111–117. https://doi.org/10.1016/j.mseb.2006.09.011

    Article  Google Scholar 

  15. Serikawa T, Henmi M, Kondoh K (2004) Microstructure and Mg concentration of Mg–Si thin films deposited by ion beam sputtering on glass substrate. J Vac Sci Technol A 22:1971–1974. https://doi.org/10.1116/1.1778406

    Article  Google Scholar 

  16. Tani J, Kido H (2012) Structural and electrical properties of Mg–Si thin films fabricated by radio-frequency magnetron sputtering deposition. Mater Res Soc Symp Proc. https://doi.org/10.1557/opl.2012.1558

    Google Scholar 

  17. Baleva M, Zlateva G, Atanassov A, Abrashev M, Goranova E (2005) Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix. Phys Rev B 72:115330. https://doi.org/10.1103/PhysRevB.72.115330

    Article  Google Scholar 

  18. Ogawa S, Katagiri A, Shimizu T, Matsushima M, Akiyama K, Kimura Y, Uchida H, Funakubo H (2014) Electrical properties of (110)-oriented nondoped Mg2Si films with p-type conduction prepared by RF magnetron sputtering method. J Electron Mater 43:2269–2273. https://doi.org/10.1007/s11664-014-3040-6

    Article  Google Scholar 

  19. Katagiri A, Ogawa S, Shimizu T, Matsushima M, Akiyama K, Funakubo H (2014) High temperature reproducible preparation of Mg2Si films on (001)Al2O3 substrates using RF magnetron sputtering method. Mater Res Soc Proc. https://doi.org/10.1557/opl.2014.447

    Google Scholar 

  20. Akiyama K, Katagiri A, Ogawa S, Matsushima M, Funakubo H (2013) Epitaxial growth of Mg2Si films on strontium titanate single crystals. Phys Status Solidi C 10:1688–1691. https://doi.org/10.1002/pssc.201300332

    Article  Google Scholar 

  21. Morris RG, Redin RD, Danielson GC (1958) Semiconducting properties of Mg2Si single crystals. Phys Rev 109:1909–1915

    Article  Google Scholar 

  22. Tamura D, Nagai R, Sugimoto K, Udono H, Kikuma I, Tajima H, Ohsugi IJ (2007) Melt growth and characterization of Mg2Si bulk crystals. Thin Solid Films 515:8272–8276. https://doi.org/10.1103/PhysRev.109.1909

    Article  Google Scholar 

  23. Imai Y, Watanabe A, Mukaida M (2003) Electronic structures of semiconducting alkaline-earth metal silicides. J Alloys Comp 358:257–263. https://doi.org/10.1016/S0925-8388(03)00037-9

    Article  Google Scholar 

  24. Tobola J, Kaprzyk S, Scherrer H (2010) Mg-vacancy-induced semiconducting properties in Mg2Si1−xSbx from electronic structure calculations. J Electron Mater 39:2064–2069. https://doi.org/10.1007/s11664-009-1000-3

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Kakenhi [26630304 (JSPS)]. PSS wishes to thank Japan society for promotion of science (JSPS) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Funakubo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katagiri, A., Ogawa, S., Uehara, M. et al. Growth of (111)-oriented epitaxial magnesium silicide (Mg2Si) films on (001) Al2O3 substrates by RF magnetron sputtering and their properties. J Mater Sci 53, 5151–5158 (2018). https://doi.org/10.1007/s10853-017-1902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1902-z

Keywords

Navigation