Skip to main content
Log in

Enhancement of Performance in TFET by Reducing High-K Dielectric Length and Drain Electrode Thickness

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A Dual Material Double Gate Tunnel Field Effect Transistor (DMDGTFET) with reduced high-K dielectric length (LK = 15 nm) and drain electrode thickness (6 nm) is proposed and performed a TCAD simulation. The simulation result of proposed device exhibits suppression in gate-to-drain capacitance (CGD). The (CGD) is proportional to dielectric constant (ε) of the gate insulator and drain-electrode thickness of device. In the proposed DMDGTFET, the reduction in drain electrode thickness and LK gives a low electron concentration (Q) and low dielectric constant (ε) in channel/drain junction, respectively, which results in suppression of CGD. At VGS = 2 V, the CGD for the proposed and conventional device are 9 f F, and 7 f F, respectively. In addition, the proposed device exhibit unity current-gain cut-off frequency of 62 GHz, while it is 57 GHz for conventional device. The on-current (ION) of the proposed device is also measured as 2 × 10−5 (A/mm). Thus, the proposed DMDGTFET is potential candidate for fast switching applications without compromising on-current (ION).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. William MR, Gehan AJA (1995) Silicon surface tunnel transistor. Appl Phys Lett 67(4):494–496

    Article  Google Scholar 

  2. Qin Z, Wei Z, Seabaugh A (2006) Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett 27(4):297–300

  3. Boucartand K, Ionescu AM (2007) Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733

  4. Gracia D, Nirmal D, Moni J (2018) Impact of leakage current in Germanium Channel based DMDG TFET using drain-gate Underlap technique. AEU Int J Electron Commun 96:164–169

    Article  Google Scholar 

  5. Shaker A, ElSabbagh M, El-Banna MM (2019) Impact of nonuniform gate oxide shape on TFET performance: A reliability issue. Physica E 106:346–351

  6. Liu X, Hu H, Wang M, Zhang H, Wang B (2018) Study of fully-depleted Ge double-gate n-type Tunneling Field-Effect Transistors for improvement in on-state current and sub-threshold swing. Physica E 95:51–58

  7. Gracia D, Nirmal D, Justeena AN (2017) Investigation of Ge based double gate dual metal tunnel FET novel architecture using various hetero dielectric materials. Superlattice Microst 109:154–160

    Article  CAS  Google Scholar 

  8. A. Vandooren, R. Rooyackers, D. Leonelli, F. Iacopi, E. Kunnen, D. Nguyen, M. Demand, P. Ong, L. Willie, J. Moonens, O. Richard, A. S. Verhulst, W. G. Vandenberghe, G. Groeseneken, S. D. Gendt, and M. Heyns, (2009) “A 35 nm diameter vertical silicon nanowire short-gate tunnel FET with high-k/metal gate,” in proc. IEEE Silicon Nanoelectron ,Workshop, 21–22

  9. Saurabh S, Jagadesh Kumar M, Member S (2011) IEEE Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor. IEEE Trans on Electron Devices 58(2):404–410

    Article  CAS  Google Scholar 

  10. Ghosh B, Akram MW (2013) Junctionless Tunnel Field Effect Transistor. IEEE Electron Device Lett 34(5):584–586

    Article  CAS  Google Scholar 

  11. Kumar J (2014) Compact Analytical Model of Dual Material Gate Tunneling Field-Effect Transistor Using Interband Tunneling and Channel Transport. IEEE Trans on Electron Devices 61(6):1936–1942

    Article  Google Scholar 

  12. Sant S, Schenk A (2015) Band-Offset Engineering for GeSn-SiGeSn Hetero Tunnel FETs and the Role of Strain. IEEE J Electron Devices Soc 3(3):164–175

    Article  CAS  Google Scholar 

  13. Upasana, Rakhi Narang, Manoj Saxena, and Mridula Gupta, (2015)“Modeling and TCAD Assessment for Gate Material and Gate Dielectric Engineered TFET Architectures: Circuit-Level Investigation for Digital Applications,” IEEE Trans on Electron Devices, 62(10), 3348 – 3356.

  14. Verreck D, Verhulst AS, Kao K-H, Vandenberghe WG, De Meyer K, Groeseneken G (2013) Quantum Mechanical Performance Predictions of p-n-i-n Versus Pocketed Line Tunnel Field-Effect Transistors. IEEE Trans on Electron Devices 60(7):2128–2134

    Article  CAS  Google Scholar 

  15. Verreck D, Verhulst AS, Yang X, Yakimets D, El Kazzi S, Parvais B, Groeseneken G, Collaert N, Mocuta A (2018) Built-In Sheet Charge as an Alternative to Dopant Pockets in Tunnel Field-Effect Transistors. IEEE J Electron Devices Soc 6:658–663

    Article  CAS  Google Scholar 

  16. Grillet C, Cresti A, Pala MG (2018) Vertical GaSb/AlSb/InAs Heterojunction Tunnel-FETs: A Full Quantum Study. IEEE Trans on Electron Devices 65(7)

  17. Choi WY, Lee W (2010) Hetero-Gate-Dielectric Tunneling Field-Effect Transistors. IEEE Trans on Electron Devices 57(9):2317–2319

    Article  Google Scholar 

  18. Anne SV, William GV, Karen M, Guido G (2007) Tunnel field-effect transistor without gate-drain overlap. Appl Phys Lett 91(5):053102

    Article  Google Scholar 

  19. Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) On Enhanced Miller Capacitance Effect in Interband Tunnel Transistors. IEEE Electron Device Lett 30(10):1102–1104

    Article  CAS  Google Scholar 

  20. Biswal SM, Baral B, De D, Sarkar A (2016) Study of effect of gate length downscaling on the Analog/RF performance and Linearity Investigation of InAs-based nanowire Tunnel FET. Superlattice Microst 91(3):319–330

    Article  CAS  Google Scholar 

  21. Kumar S, Goel E, Singh K, Singh B, Singh PK, Baral K, Jit S (2017) 2-D Analytical Modeling of the Electrical Characteristics of Dual-Material DoubleGate TFETs With a SiO2/HfO2 Stacked Gate-Oxide Structure. IEEE Trans on Electron Devices 64(3):960–968

    Article  CAS  Google Scholar 

  22. Avci UE, Morris DH, Young IA (2015) Tunnel Field-Effect Transistors: Prospects and Challenges. IEEE Trans on Electron Devices 3(3):88–95

    Article  CAS  Google Scholar 

  23. Yadav DS, Sharma D, Kumar A, Rathor D, Agrawal R, Tirkey S, Raad BR, Bajaj V (2017) Performance investigation of hetero material (InAs/Si)-based charge plasma TFET. Micro & Nano Lett 12(6):358–363

    Article  CAS  Google Scholar 

  24. Ghosh S, Koley K, Sarkar CK (2017) Deep insight into linearity and NQS parameters of tunnel FET with emphasis on lateral straggle. Micro & Nano Lett 13(1):35–40

    Article  Google Scholar 

  25. Tirkey S, Sharma D, Raad BR, Yadav DS (2018) A Novel Approach to Improve the Performance of Charge Plasma Tunnel Field-Effect Transistor. IEEE Trans on Electron Devices 65(1):282–289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sheeja Herobin Rani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, C.S.H., Bagan, K.B., Nirmal, D. et al. Enhancement of Performance in TFET by Reducing High-K Dielectric Length and Drain Electrode Thickness. Silicon 12, 2337–2343 (2020). https://doi.org/10.1007/s12633-019-00328-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00328-w

Keywords

Navigation