Skip to main content
Log in

Investigation of Short Channel Effects (SCEs) and Analog/RF Figure of Merits (FOMs) of Dual-Material Bottom-Spacer Ground-Plane (DMBSGP) FinFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

FinFETs are popular and forefront runner in integrated circuits (ICs) technology due to exceptional scalability and suppressed short channel effects (SCEs). The bottom spacer (BP) concept is adopted in FinFET to achieve ameliorated short-channel, reduced self heating issues and to solve width quantization effect. The dual-material-gate (DMG) concept provides novel features like threshold voltage roll-up, transconductance enhancement and suppression of SCEs by work function engineering. Further, the ground-plane (GP) concept is also introduced to minimize the interaction between source and drain region which results in suppressed drain induced barrier lowering (DIBL). This paper investigates the systematic analysis of novel DMBSGP FinFET. The electrical performance parameters are extracted for different bottom spacer height (BSH) and workfunction differences (∆W). The analog/RF figure of merits (FOMs) such as transconductance (gm), output conductance (gd), transconductance generation factor (gm/ID), early voltage (VEA), intrinsic gain (AV), cut-off frequency (fT), transconductance frequency product (TFP), gain frequency product (GFP) and gain transconductance frequency product (GTFP) are examined for different BSH of DMBSGP FinFET using 3-D ATLAS device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):82–85

    Article  Google Scholar 

  2. Dennard RH, Gaensslen FH, Yu H-N, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-Implanted MOSFET’s with very small physical dimensions. IEEE J Solid State Circuits 9(4):256–268

    Article  Google Scholar 

  3. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):302–325

    Article  Google Scholar 

  4. Yan R-H, Ourmazd A, Lee KF (1992) Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans Electron Devices 39(7):1704–1710

    Article  CAS  Google Scholar 

  5. Veeraghavan S, Fossum JG (1989) Short-Channel effects in SOI MOSFET’s. IEEE Trans Electron Devices 36(3):522–528

    Article  Google Scholar 

  6. Vandana B (2013) Study of floating body effect in SOI technology. Int J Modern Eng Res 3(3):1817–1824

    Google Scholar 

  7. Collinge J-P (1991) Problems and issues in SOI CMOS technology. Proc IEEE Int SOI Conf:126–127

  8. Balestra F, Cristoloveanu S, Benachir M, Birni J, Elewa T (1987) Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Letters 8(9):410–412

    Article  Google Scholar 

  9. Kranti A, Chung TM, Flandre D, Raskin JP (2004) Laterally asymmetric channel engineering in fully depleted double gate SOI MOSFETs for high performance analog applications. Solid State Electron 48:947–959

    Article  CAS  Google Scholar 

  10. Frank DJ, Laux SE, Fischetti MV (1992) Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go? IEDM Tech Dig:553–556

  11. Wong H-S, Frank DJ, Taur Y, Stork JMC (1994) Design and performance considerations for sub-0.1μm double-gate SOI MOSFETs. IEDM Tech. Dig.:747–750

  12. Wong H-SP, Chan KK, Taur Y (1997) Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel. IEDM Tech Dig:427–430

  13. Lee J-H, Taraschi G, Wei A, Langdo TA, Fitzgerald EA, Antoniadis DA (1999) Super self-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy. IEDM Tech Dig:71–74

  14. Hisamoto D, Lee W-C, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson R, King T-J, Bokor J, Hu C (2000) FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47:2320–2325

    Article  CAS  Google Scholar 

  15. Mohapatra SK, Pradhan KP, Singh D, Sahu PK (2015) The role of geometry parameters and fin aspect ratio of sub-20nm SOI-FinFET: an analysis towards analog and RF circuit design. IEEE Trans Nanotechnol 14(3)

  16. Narendar V (2018) Performance enhancement of FinFET devices with gate-stack (GS) high-K dielectrics for Nanoscale applications. Silicon 10(6):2419–2429

    Article  CAS  Google Scholar 

  17. Shrivastava M, Baghini MS, Sachid AB, Sharma DK, Rao VR (2008) A novel and robust approach for common mode feedback using IDDG FinFET. IEEE Trans Electron Devices 55(11):3274–3282

    Article  Google Scholar 

  18. Park T-S, Cho HJ, Choe JD, Han SY, Park D, Kim K, Yoon E, Lee J-H (2006) Characteristics of the full CMOS SRAM cell using body-tied TG MOSFETs (bulk FinFETs). IEEE Trans Electron Devices 53(3):481–487

    Article  Google Scholar 

  19. Lee H, Lee C-H, Park D, Choi Y-K (2005) A study of negative-bias temperature instability of SOI and body-tied FinFETs. IEEE Electron Device Letters 26(5):326–328

    Article  CAS  Google Scholar 

  20. Bansal A, Mukhopadhyay S, Roy K (2007) Device-optimization technique for robust and low-power FinFET SRAM Design in Nanoscale era. IEEE Trans Electron Devices 54(6):1409–1419

    Article  Google Scholar 

  21. Narendar V, Mishra RA (2015) Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattice Microst 85:357–369

    Article  CAS  Google Scholar 

  22. Tripathi S, Narendar V (2015) A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattice Microst 83:476–487

    Article  CAS  Google Scholar 

  23. Pei G, Kedzierski J, Oldiges P, Ieong M, Kan EC-C (2002) FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans Electron Devices 49(8):1411–1419

    Article  Google Scholar 

  24. Gu J, Keane J, Sapatnekar S, Kim C (2006) Width quantization aware FinFET circuit design. Proc IEEE CICC:721–724

  25. Shrivastava M, Baghini MS, Sharma DK, Rao VR (2010) A novel bottom spacer FinFET structure for improved Short-Channel. Power-Delay Therm Perform, IEEE Trans Electron Devices 57(6):1287–1294

    Article  CAS  Google Scholar 

  26. Long W, Ou H, Kuo J-M, Chin KK (1999) Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices 46(5):865–870

    Article  Google Scholar 

  27. Chaudhury A, Kumar MJ (2004) Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans Electron Devices 51(9):1463–1467

    Article  Google Scholar 

  28. Narendar V, Girdhardas KA (2018) Surface Potential Modeling of Graded-Channel Gate-Stack (GCGS) High-K Dielectric Dual-Material Double-Gate (DMDG) MOSFET and Analog/RF Performance Study. Silicon 10(6):2865–2875

    Article  CAS  Google Scholar 

  29. Narendar V, Tripathi S, Naik RBS (2018) A Two-Dimensional (2D) Analytical Modeling and Improved Short Channel Performance of Graded-Channel Gate-Stack (GCGS) Dual-Material Double-Gate (DMDG) MOSFET. Silicon 10(6):2399–2407

    Article  Google Scholar 

  30. Narendar V, Rai S, Tiwari S (2016) A two-dimensional (2D) analytical surface potential and subthreshold current model for underlap dual-material double-gate (DMDG) FinFET. J Comput Electron 15(4):1316–1325

    Article  CAS  Google Scholar 

  31. Narendar V, Rai S, Tiwari S, Mishra RA (2016) A two-dimensional (2D) analytical subthreshold swing and transconductance model of underlap dual-material double-gate (DMDG) MOSFET for analog/RF applications. Superlattice Microst 100:274–289

    Article  CAS  Google Scholar 

  32. Xiong W, Colinge JP (1999) Self-aligned implanted ground-plane fully depleted SOI MOSFET. Electron Lett 35(23):2059–2060

    Article  CAS  Google Scholar 

  33. Yanagi S, Nakakubo A, Omura Y (2001) Proposal of partial-ground-plane (PGP) silicon-on-insulator (SOI) MOSFET for deep sub-0.1-μm channel regime. IEEE Electron Device Lett 22(6):278–280

    Article  CAS  Google Scholar 

  34. Lolivier J, Widiez J, Vinet A, Poiroux T, Dauge F, Previtali B, Mouis A, Jommah J, Balestra F, Deleonibus S (2004) Experimental comparison between double gate, ground plane, and single gate SOI CMOSFETs. Proc ESSDERC:77–80

  35. Kumar MJ, Siva M (2008) The ground plane in buried oxide for controlling Short-Channel effects in Nanoscale SOI MOSFETs. IEEE Trans Electron Devices 55(6)

  36. Saremi M, Kusha AA, Mohammadi S (2012) Ground plane fin-shaped field effect transistor (GP-FinFET): a FinFET for low leakage power circuits. Microelectron Eng 95:74–82

    Article  CAS  Google Scholar 

  37. Lombardi C, Manzini S, Saporito A, Vanzi M (1988) A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans Comp-Aided Des Integ Circ Syst 7(11):1164–1171

    Article  Google Scholar 

  38. Shockley W, Read WT (1952) Statistics of the recombination of holes and electrons. Phys Rev 87:835–842

    Article  CAS  Google Scholar 

  39. Hall RN (1952) Electron-hole recombination in germanium. Phys Rev 87:387

    Article  CAS  Google Scholar 

  40. Yang IY, Lochtefeld A, Antoniadis DA (1996) Silicon on insulator with active substrate technology. Proc IEEE Int SOI Conf:106–107

  41. Yang IY, Vieri C, Chandrakasan A, Antoniadis DA (1997) Back-gated CMOS on SOIAS for dynamic threshold voltage control. IEEE Trans Electron Devices 44(5):822–831

    Article  CAS  Google Scholar 

  42. Bangsaruntip S, Cohen GM, Majumdar A, Zhang Y, Engelmann SU, Fuller NCM, Gignac LM, Mittal S, Newbury JS, Guillorn M, Barwicz T, Sekaric L, Frank MM, Sleight JW (2009) High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. IEDM Tech Dig:297–300

  43. Lu Q, Yeo YC, Ranade P, Takeuchi H, King TJ, Hu C, Song SC, Luan HF, Kwong DL (2000) Dual-metal gate technology for deep-submicron CMOS transistors. Symp VLSI Tech:72–73

  44. Yeo YC (2004) Metal gate technology for nanoscale transistors–material selection and process integration issues. Thin Solid Films 462–463:34–41

    Article  Google Scholar 

  45. Yuan J, Woo JCS (2005) A novel split-gate MOSFET design realized by a fully silicided gate process for the improvement of transconductance and output resistance. IEEE Electron Device Lett 26(11):829–831

    Article  CAS  Google Scholar 

  46. Zhang Z, Song SC, Huffman C, Hussain M, Barnett J, Moumen N, Alshareef H, Majhi P, Sim JH, Bae S, Lee BH (2005) Integration of Dual Metal Gate CMOS on High-k Dielectrics Utilizing a Metal Wet Etch Process. Electrochem Solid-State Lett 8:271–274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadthiya Narendar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendar, V., Narware, P., Bheemudu, V. et al. Investigation of Short Channel Effects (SCEs) and Analog/RF Figure of Merits (FOMs) of Dual-Material Bottom-Spacer Ground-Plane (DMBSGP) FinFET. Silicon 12, 2283–2291 (2020). https://doi.org/10.1007/s12633-019-00322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00322-2

Keywords

Navigation