Skip to main content
Log in

Halloysite Nanotubes Modified by Fe3O4 Nanoparticles and Applied as a Natural and Efficient Nanocatalyst for the SymmetricalHantzsch Reaction

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Halloysite as an impressive natural eco-friendly nanotube with aluminosilicate structure has been investigated recently due to its unique features such as specific morphology and excellent bio-adaptability. In this research, Fe3O4 nanoparticles have been loaded on the tubular halloysite by co-precipitation method in order to synthesis magnetic halloysite (Hal-Fe3O4). To characterize this recoverable nanocatalyst, applicable analyses such as Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) analysis, field-emission scanning electron microscopy (FE-SEM) images, X-ray diffraction (XRD) pattern, Thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM) curves have been carried out. The results confirmed that Fe3O4 nanoparticles with cubic structure, and uniform distribution, were located at halloysite nanotubes (HNTs). This aluminosilicate nanocomposite with high thermal stability, crystalline structure, and stable morphology was evaluated as a heterogeneous catalyst in the symmetrical Hantzsch reaction for the first time. Easy synthesis process, green media, high performance, recoverable catalyst and reusing of the Hal-Fe3O4 as a nanocatalyst for 8 times are the main features of this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maleki A, Hajizadeh Z, Salehi P (2019) Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci Rep 9:5552. https://doi.org/10.1038/s41598-019-42126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maleki A, Hajizadeh Z, Firozi-Haji R (2018) Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Micropor Mesopor Mater 259:46–53

    Article  CAS  Google Scholar 

  3. Maleki A, Hajizadeh Z (2019) Silicon. https://doi.org/10.1007/s12633-019-0069-4

  4. Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8–17

    Article  CAS  Google Scholar 

  5. Veerabadran NG, Price RR, Lvov YM (2007) Clay nanotubes for encapsulation and sustained release of drugs. Nano 2:115–120

    Article  CAS  Google Scholar 

  6. Xie A, Dai J, Chen X, Zou T, He J, Chang Z, Li C, Yan Y (2016) Hollow imprinted polymer nanorods with a tunable shell using halloysite nanotubes as a sacrificial template for selective recognition and separation of chloramphenicol. RSC Adv 6:51014–51023

    Article  CAS  Google Scholar 

  7. Xie Y, Chang PR, Wang S, Yu J, Ma X (2011) Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. starch composites. Carbohydr Polym 83:186–191

    Article  CAS  Google Scholar 

  8. Zou M, Du M, Zhang M, Yang T, Zhu H, Wang P, Bao S (2015) Synthesis and deposition of ultrafine noble metallic nanoparticles on amino-functionalized halloysite nanotubes and their catalytic application. Mater Res Bull 61:375–382

    Article  CAS  Google Scholar 

  9. Fattahi N, Ramazani A, Kinzhybalo V (2018) Silicon. https://doi.org/10.1007/s12633-017-9757-0

  10. Fattahi N, Ramazani A, Ahankar H, Azimzadeh Asiabi P, Kinzhybalo V (2018) Silicon. https://doi.org/10.1007/s12633-018-9954-5

  11. Maleki A, Rahimi J, Hajizadeh Z, Niksefat M (2019) Synthesis and characterization of an acidic nanostructure based on magnetic polyvinyl alcohol as an efficient heterogeneous nanocatalyst for the synthesis of α-aminonitriles. J Organomet Chem 881:58–65

    Article  CAS  Google Scholar 

  12. Hajizadeh Z, Maleki A (2018) Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mol Catal 460:87–93

    Article  CAS  Google Scholar 

  13. Maleki A, Hajizadeh Z, Sharifi V, Emdadi Z (2019) A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J Clean Prod 215:1233–1245

    Article  CAS  Google Scholar 

  14. Riahi-Madvaar R, Taher MA, Fazelirad H (2017) Synthesis and characterization of magnetic halloysite-iron oxide nanocomposite and its application for naphthol green B removal. Appl Clay Sci 137:101–106

    Article  CAS  Google Scholar 

  15. Duan J, Liu R, Chen T, Zhang B, Liu J (2012) Halloysite nanotube-Fe3O4 composite for removal of methyl violet from aqueous solutions. Desalination 293:46–52

    Article  CAS  Google Scholar 

  16. Tian X, Wang W, Tian N, Zhou C, Yang C, Komarneni S (2016) Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe 3 O 4 /halloysite nanohybrid. J Hazard Mater 309:151–156

    Article  CAS  Google Scholar 

  17. Mu B, Wang W, Zhang J, Wang A (2014) Superparamagnetic sandwich structured silver/halloysite nanotube/Fe3O4nanocomposites for 4-nitrophenol reduction. RSC Adv 4:39439–39445

    Article  CAS  Google Scholar 

  18. Hyvönen Z, Hämäläinen V, Ruponen M, Lucas B, Rejman J, Vercauteren D, Demeester J, De Smedt S, Braeckmans K (2012) Elucidating the pre- and post-nuclear intracellular processing of 1,4-dihydropyridine based gene delivery carriers. J Control Release 162:167–175

    Article  Google Scholar 

  19. Rucins M, Kaldre D, Pajuste K, Fernandes MAS, Vicente JAF, Klimaviciusa L, Jaschenko E, Kanepe-Lapsa I, Shestakova I, Plotniece M, Gosteva M, Sobolev A, Jansone B, Muceniece R, Klusa V, Plotniece A (2014) Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives. C R Chim 17:69–80

    Article  CAS  Google Scholar 

  20. Hilgeroth A, Fleischer R, Wiese M, Heinemann FW (1999). J Comput Aided Mol Des 13:233–242

    Article  CAS  Google Scholar 

  21. Yiu SH, Knaus EE (1999) Synthesis of valproate, valerate, and 1-methyl-1, 4-dihydropyridyl-3-carbonyloxy ester derivatives of Hantzsch 1,4-dihydropyridines as potential prodrugs and their evaluation as calcium channel antagonist and anticonvulsant agents. Drug Dev Res 48:26–37

    Article  CAS  Google Scholar 

  22. Dondoni A, Massi A, Minghini E, Bertolasi V (2004) Multicomponent Hantzsch cyclocondensation as a route to highly functionalized 2- and 4-dihydropyridylalanines, 2- and 4-pyridylalanines, and their N-oxides: preparation via a polymer-assisted solution-phase approach. Tetrahedron 60:2311–2326

    Article  CAS  Google Scholar 

  23. Pareek P, Kant R, Shukla S, Ojha K (2010). Open Chem 8:163–173

    Google Scholar 

  24. Maleki A (2018) Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason Sonochem 40:460–464

    Article  CAS  Google Scholar 

  25. Bitaraf M, Amoozadeh A, Otokesh S (2016) A simple and efficient one-pot synthesis of 1,4-dihydropyridines using nano-WO3- supported sulfonic acid as an heterogeneous catalyst under solvent-free conditions. J Chin Chem Soc 63:336–344

    Article  CAS  Google Scholar 

  26. Amirheidari B, Seifi M, Abaszadeh M (2016) Evaluation of magnetically recyclable nano-Fe3O4 as a green catalyst for the synthesis of mono- and bis-tetrahydro-4H-chromene and mono and bis 1,4-dihydropyridine derivatives. Res Chem Intermed 42:3413–3423

    Article  CAS  Google Scholar 

  27. Srinivasan VV, Pachamuthu MP, Maheswari R (2015) Lewis acidic mesoporous Fe-TUD-1 as catalysts for synthesis of Hantzsch 1,4-dihydropyridine derivatives. J Porous Mater 22:1187–1194

    Article  CAS  Google Scholar 

  28. Maleki A, Firozi-Haji R, Hajizadeh Z (2018) Magnetic guanidinylated chitosan nanobiocomposite: A green catalyst for the synthesis of 1,4-dihydropyridines. Int J Biol Macromol 116:320–326

    Article  CAS  Google Scholar 

  29. Maleki A, Kamalzare M, Aghaei M (2015) Efficient one-pot four-component synthesis of 1,4-dihydropyridines promoted by magnetite/chitosan as a magnetically recyclable heterogeneous nanocatalyst. J Nanostruct Chem 5:95–105

    Article  CAS  Google Scholar 

  30. Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497

    Article  CAS  Google Scholar 

  31. Hsieh S, Huang B, Hsieh S, Wu C, Wu C, Lin P, Huang Y, Chang C (2010) Green fabrication of agar-conjugated Fe3O4magnetic nanoparticles. Nanotechnology 21:445601–445606

    Article  CAS  Google Scholar 

  32. Maleki A, Zand P, Mohseni Z (2016) Fe3O4@PEG-SO3H rod-like morphology along with the spherical nanoparticles: novel green nanocomposite design, preparation, characterization and catalytic application. RSC Adv 6:110928–110934

    Article  CAS  Google Scholar 

  33. Dutta AK, Gogoi P, Borah R (2014) Synthesis of dibenzoxanthene and acridine derivatives catalyzed by 1,3-disulfonic acid imidazolium carboxylate ionic liquids. RSC Adv 4:41287–41291

    Article  CAS  Google Scholar 

  34. Nasr-Esfahani M, Montazerozohori M, Abdizadeh T (2015) Nanorod vanadatesulfuric acid (VSA NRs)-catalyzed green synthesis of hexahydroacridine-1,8-diones in solvent-free conditions. C R Chim 18:547–553

    Article  CAS  Google Scholar 

  35. Heydari A, Khaksar S, Tajbakhsh M, Bijanzadeh HR (2009) One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. J Fluor Chem 130:609–614

    Article  CAS  Google Scholar 

  36. Khadilkar BM, Gaikar VG, Chitnavis AA (1995) Aqueous hydrotrope solution as a safer medium for microwave enhanced hantzsch dihydropyridine ester synthesis. Tetrahedron Lett 36:8083–8086

    Article  CAS  Google Scholar 

  37. Memarian HR, Bagheri M, Döpp D (2004). Monatsh Chem Chem Mon 135:833–838

    Article  CAS  Google Scholar 

  38. Eynde JJV, Delfosse F, Mayence A, Van Haverbeke Y (1995) Old reagents, new results: Aromatization of Hantzsch 1,4-dihydropyridines with manganese dioxide and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Tetrahedron 51:6511–6516

    Article  Google Scholar 

  39. Wang L, Zhu K-Q, Chen Q, He M-Y (2014). Green Process Synth 3:457–461

    CAS  Google Scholar 

  40. Chate AV, Rathod UB, Kshirsagar JS, Gaikwad PA, Mane KD, Mahajan PS, Nikam MD, Gill CH (2016) Ultrasound assisted multicomponent reactions: A green method for the synthesis of N-substituted 1,8-dioxo-decahydroacridines using β-cyclodextrin as a supramolecular reusable catalyst in water. Chin J Catal 37:146–152

    Article  CAS  Google Scholar 

  41. Amoozadeh A, Golian S, Rahmani S (2015) TiO2-coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. RSC Adv 5:45974–45982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maleki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, Z., Maleki, A., Rahimi, J. et al. Halloysite Nanotubes Modified by Fe3O4 Nanoparticles and Applied as a Natural and Efficient Nanocatalyst for the SymmetricalHantzsch Reaction. Silicon 12, 1247–1256 (2020). https://doi.org/10.1007/s12633-019-00224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00224-3

Keywords

Navigation