Skip to main content
Log in

Erosion Behavior of Gelcast Fused Silica Ceramic Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, the characteristics of solid particle erosion on fused silica ceramics are investigated. Gelcasting, a near net shape forming process, is adopted for the fabrication of ceramics. Three types of ceramics with a combination of pure fused silica, fused silica+5 wt% silicon nitride (Si3N4) + 1 wt% boron nitride (BN) and fused silica+5 wt% silicon nitride (Si3N4) +1 wt% alumina (Al2O3) are prepared at a constant 52 vol% solid loading, 10 wt% monomer content and 10:1 monomer ratio. Different impingement angles (30o, 45o, 60o and 90o) and three impact velocities (86 m/s, 101 m/s and 148 m/s) were chosen to examine the behavior of erosion on gelcasted ceramics using SiO2 particles as erodent. The maximum rate of erosion is obtained at normal impingement angle (90o), which shows the brittle nature of ceramics. The impact velocity and angle of impingement have an appreciable effect on erosion rate. Resistance to erosive wear is found to have improved with the inclusion of reinforcements in the fused silica ceramics. The erosion rates of different ceramics are compared. Ceramic composite with a combination fused silica+5 wt% Si3N4+ 1 wt% BN shows the highest resistance to wear. The surface roughness and morphology of the eroded surfaces have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curkovic L et al (2011) Solid particle erosion behaviour of high purity alumina ceramics. Ceram Int 37:29–35

    Article  CAS  Google Scholar 

  2. Choi HJ, Han DH, Park DS, Kim HD, Han BD, Lim DS, Kim IS (2003) Erosion characteristics of silicon nitride ceramics. Ceram Int 29:713–719

    Article  CAS  Google Scholar 

  3. Wang X, Fang M, Zhang LC, Ding H, Liu YG, Huang Z, Huang S, Yang J (2013) Solid particle erosion of alumina ceramics at elevated temperature. Mater Chem Phys 139:765–769

    Article  CAS  Google Scholar 

  4. Liu C, Sun J (2010) Erosion behaviour of B4C-based ceramic composites. Ceram Int 36:1297–1302

    Article  CAS  Google Scholar 

  5. Murugesh L, Scattergood RO (1991) Effect of erodent properties on the erosion of alumina. J Mater Sci 26:5456–5466

    Article  CAS  Google Scholar 

  6. Srinivasan S, Scattergood RO (1988) Effect of erodent hardness on erosion of brittle materials. Wear 128:139–152

    Article  CAS  Google Scholar 

  7. Shipway PH, Hutchings IM (1996) The role of particle properties in the erosion of brittle materials. Wear 193:105–113

    Article  CAS  Google Scholar 

  8. Zhou J, Bahadur S (1991) The effect of material composition and operational variables on the erosion of alumina ceramics. Wear 150:343–354

    Article  CAS  Google Scholar 

  9. Lathabai S, Pender DC (1995) Microstructural influence in slurry erosion of ceramics. Wear 189:122–135

    Article  CAS  Google Scholar 

  10. Xiong F et al (1997) Effect of grain size and test configuration on the wear behavior of alumina. J Am Ceram Soc 80(5):1310–1312

    Article  CAS  Google Scholar 

  11. Hussainova I (2001) Some aspects of solid particle erosion of cermets. Tribol Int 34:89–93

    Article  CAS  Google Scholar 

  12. Celotta DW, Qureshi UA, Stepanov EV, Goulet DP, Hunter J, Buckberry CH, Hill R, Sherikar SV, Moshrefi-Torbati M, Wood RJK (2007) Sand erosion testing of novel compositions of hard ceramics. Wear 263:278–283

    Article  CAS  Google Scholar 

  13. Hussainova I (2003) Effect of microstructure on the erosive wear of titanium carbide-based cermets. Wear 255:121–128

    Article  CAS  Google Scholar 

  14. Hussainova I (2005) Microstructure and erosive wear in ceramic-based composites. Wear 258:357–365

    Article  CAS  Google Scholar 

  15. Sharma SK, Kumar BVM, Lim KY, Kim YW, Nath SK (2014) Erosion behavior of SiC–WC composites. Ceram Int 40:6829–6839

    Article  CAS  Google Scholar 

  16. Amirthan G, Udayakumar A, Bhanu Prasad VV, Balasubramanian M (2010) Solid particle erosion studies on biomorphic Si/SiC ceramic composites. Wear 268:145–152

    Article  CAS  Google Scholar 

  17. Zhang Y, Cheng YB, Lathabai S (2000) Erosion of alumina ceramics by air- and water-suspended garnet particles. Wear 240:40–51

    Article  CAS  Google Scholar 

  18. Gopi KR, Nagarajan R, Rao SS, Mandal S (2008) Erosion model on alumina ceramics: a retrospection, validation and refinement. Wear 264:211–218

    Article  CAS  Google Scholar 

  19. Renjo MM, Ćurković L, Grilec K (2015) Erosion resistance of slip cast composite Al2O3-ZrO2 ceramics. Procedia Eng 100:1133–1140

  20. Sharma SK, Venkata Manoj Kumar B, Kim YW (2017) Effect of impingement angle and WC content on high temperature erosion behavior of SiC-WC composites. Int J Refract Met H 68:166–171

    Article  CAS  Google Scholar 

  21. Sharma SK et al (2017) High temperature erosion behavior of spark plasma sintered ZrB2-SiC composites. Ceram Int 43:8982–8988

    Article  Google Scholar 

  22. Li X, Ding H, Huang Z, Fang M, Liu B, Liu Y׳, Wu X, Chen S (2014) Solid particle erosion-wear behaviorof SiC–Si3N4 composite ceramic at elevated temperature. Ceram Int 40:16201–16207

    Article  CAS  Google Scholar 

  23. Yang JZ, Huang ZH, Fang MH, Hu XZ, Liu YG, Sun HR (2013) Reaction sintered Fe–sialon ceramic composite: processing, characterization and high temperature erosion wear behavior. J Asian Ceram Soc 1:163–169

    Article  Google Scholar 

  24. Kandi KK et al (2016) Effect of monomers content and their ratio on Gelcasting of fused silica. T Indian Ceram Soc 75(3):1–4

    Google Scholar 

  25. Punugupati G, Bose PSC, Raghavendra G, Rao CSP (2018) Influence of solid loading and ratio of monomers on mechanical and dielectric properties of hybrid ceramic composites. Silicon. https://doi.org/10.1007/s12633-018-0061-4

    Article  Google Scholar 

  26. Kouroupis KB (1992) Flight capabilities of high-speed-missile radome materials. Johns Hopkins APL Tech Dig 13(3):386-392

  27. Du H et al (2010) Effect of temperature on dielectric properties of Si3N4/SiO2 composite and silica ceramic. J Alloys Compd 503:L9–L13

    Article  CAS  Google Scholar 

  28. Jia D, Zhou L, Yang Z, Duan X, Zhou Y (2011) Effect of preforming process and starting fused SiO2 particle size on microstructure and mechanical properties of pressurelessly sintered BNp/SiO2 ceramic composites. J Am Ceram Soc 94(10):3552–3560

    Article  CAS  Google Scholar 

  29. Wan W et al (2016) Effect of trace alumina on mechanical, dielectric, and ablation properties of fused silica ceramics. J Alloys Compd 675:64–72

    Article  CAS  Google Scholar 

  30. Chen B, Liu X, Zhao X, Wang Z, Wang L, Jiang W, Li J (2014) Preparation and properties of reduced graphene oxide/fused silica composites. Carbon 77:66–75

    Article  CAS  Google Scholar 

  31. Latha PS et al (2015) Evaluation of mechanical and tribological properties of bamboo–glass hybrid fiber reinforced polymer composite. J Ind Text:1528083715569376

  32. Panchal M, Raghavendra G, Prakash MO, Ojha S (2018) Effects of environmental conditions on erosion wear of eggshell particulate epoxy composites. Silicon 10:627–634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Raghavendra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punugupati, G., Bose, P.S.C., Raghavendra, G. et al. Erosion Behavior of Gelcast Fused Silica Ceramic Composites. Silicon 12, 903–911 (2020). https://doi.org/10.1007/s12633-019-00184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00184-8

Keywords

Navigation