Skip to main content
Log in

Source-Drain Junction Engineering Schottky Barrier MOSFETs and their Mixed Mode Application

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, a new structure for a silicon on insulator Schottky barrier MOSFET (SOI SB-MOSFET) has been proposed. The simulated device is calibrated with experimental result. Here n + pocket doping segregation in the source and drain side have been used. The simulated electrical characteristics of the proposed device With Source Extension (WSE) and With Source Drain Extension (WSDE) reveal more remarkable reduction in drain induced barrier tunneling (DIBT), high Ion/Ioff and low Subthreshold swing(SS) than conventional device. Furthermore, the effect of varying temperature has been investigated on subthreshold swing for various oxide thickness (Tox) and silicon film thickness (TSi). Moreover, proposed SB-MOSFETs have been used in the inverter circuit, exhibit a high gain (˷12) and Noise Margin (NMH = 0.4 and NML = 0.46).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saitoh W, Itoh A, Yamagami S, Asada M (1999) Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of sub-50-nm n-type devices with metal gate. Jpn J Appl Phys 38:6226–6231

    Article  CAS  Google Scholar 

  2. Larson JM, Snyder JP (2006) Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans Electron Devices 53:1048–1058. https://doi.org/10.1109/TED.2006.871842

    Article  CAS  Google Scholar 

  3. Husain MK, Li XV, de Groot CH (2009) High-quality Schottky contacts for limiting leakage currents in Ge-based Schottky barrier MOSFETs. IEEE Trans Electron Devices 56:499–504. https://doi.org/10.1109/TED.2008.2011724

    Article  CAS  Google Scholar 

  4. Larrieu G, Yarekha DA, Dubois E, Breil N, Faynot O (2009) Arsenic-segregated rare-earth silicide junctions: reduction of Schottky barrier and integration in metallic n-MOSFETs on SOI. IEEE Electron Device Lett 30:1266–1268. https://doi.org/10.1109/LED.2009.2033085

    Article  CAS  Google Scholar 

  5. Sun L, Liu XY, Liu M, Du G, Han RQ (2003) Monte Carlo simulation of Schottky contact with direct tunnelling model. Semicond Sci Technol 18:576–581

    Article  CAS  Google Scholar 

  6. Zhang M, Knoch J, Zhao QT, Breuer U, Mantl S (2005) Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs. Solid-state device research conference, 2005. ESSDERC 2005. Proceedings of 35th European. IEEE, pp 457–460

  7. Luo J, Wu D, Qiu Z, Lu J, Hultman L, Ostling M, Zhang S-L (2011) On different process schemes for MOSFETs with a controllable NiSi-based metallic source/drain. IEEE Trans Electron Devices 58:1898–1906. https://doi.org/10.1109/TED.2011.2145381

    Article  CAS  Google Scholar 

  8. Knoch J, Zhang M, Zhao QT, Lenk S, Mantl S, Appenzeller J (2005) Effective Schottky barrier lowering in silicon-on-insulator Schottky-barrier metal-oxide-semiconductor field-effect transistors using dopant segregation. Appl Phys Lett 87:263505. https://doi.org/10.1063/1.2150581

    Article  CAS  Google Scholar 

  9. Kinoshita A, Tanaka C, C Y, Uchida K, Koga J (2005) High-performance 50-nm-gate-length schottky-source/drain MOSFETs with dopant-segregation junctions. VLSI technology, 2005. Digest of technical papers. 2005 symposium on digest of technical papers. 2005 symposium on. IEEE, pp 158–159

  10. Kinoshita A, Tsuchiya Y, Yagishita A, Uchida K, Koga J (2004) Solution for high-performance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant segregation technique. In: VLSI technology, 2004. Digest of technical papers. 2004 symposium on. pp. 168–169. IEEE

  11. Chin YK, Pey K-L, Singh N, Lo G-Q, Tan KH, Ong C-Y, Tan LH (2009) Dopant-segregated Schottky silicon-nanowire MOSFETs with gate-all-around channels. IEEE Electron Device Lett 30:843–845. https://doi.org/10.1109/LED.2009.2022851

    Article  CAS  Google Scholar 

  12. Kumar P, WasimArif, Bhowmick B (2017) Scaling of dopant segregation Schottky barrier using metal strip buried oxide MOSFET and its comparison with conventional device. Silicon. 10:811–820. https://doi.org/10.1007/s12633-016-9534-5

    Article  CAS  Google Scholar 

  13. Kumar P, Bhowmick B (2017) 2D analytical model for surface potential based electric field and impact of wok function in DMG SB MOSFET. Superlattices and Microstructures 109:805–814. https://doi.org/10.1016/j.spmi.2017.06.001

    Article  CAS  Google Scholar 

  14. Kondekar PN, Kale S (2015) Design and investigation of double gate Schottky barrier MOSFET using gate engineering. Micro & Nano Letters 10:707–711. https://doi.org/10.1049/mnl.2015.0046

    Article  Google Scholar 

  15. Vega RA, Liu T-JK (2008) A comparative study of dopant-segregated Schottky and raised source/drain double-gate MOSFETs. IEEE Trans Electron Devices 55:2665–2677. https://doi.org/10.1109/TED.2008.2003024

    Article  Google Scholar 

  16. Ghoneim H, Knoch J, Riel H, Webb D, Bjork MT, Karg S, Lortscher E, Schmid H, Riess W (2009) Interface engineering for the suppression of ambipolar behavior in Schottky-barrier MOSFETs. Ultimate integration of silicon, 2009. ULIS 2009. 10th International Conference on. IEEE, pp 69–72

  17. Jang M, Kim Y, Jun M, Choi C (2008) High performance Schottky barrier MOSFETs with work function engineering, Silicon Nanoelectronics Workshop on IEEE. https://doi.org/10.1109/SNW.2008.5418432

  18. Kumar P, Bhowmick B (2017) 2-D analytical modeling for electrostatic potential and threshold voltage of a dual work function gate Schottky barrier MOSFET. J Comput Electron 16:658–665. https://doi.org/10.1007/s10825-017-1011-x

    Article  Google Scholar 

  19. Jhaveri R, Nagavarapu V, Woo JCS (2009) Asymmetric Schottky tunneling source SOI MOSFET Design for Mixed-Mode Applications. IEEE Trans Electron Devices 56:93–99. https://doi.org/10.1109/TED.2008.2008161

    Article  CAS  Google Scholar 

  20. Guin S, Chattopadhyay A, Karmakar A, Mallik A (2014) Impact of a pocket doping on the device performance of a Schottky tunneling field-effect transistor. IEEE Trans Electron Devices 61:2515–2522. https://doi.org/10.1109/TED.2014.2325068

    Article  CAS  Google Scholar 

  21. Larrieu G, Dubois E (2011) CMOS inverter based on Schottky source& 2013; drain MOS technology with low-temperature dopant segregation. IEEE Electron Device Lett 32:728–730. https://doi.org/10.1109/LED.2011.2131111

    Article  CAS  Google Scholar 

  22. Sentaurus Device User Guide Version C-2009.12, Synopsys, Mountain View, CA, USA (2009)

  23. Urban C, Sandow C, Zhao Q-T, Knoch J, Lenk S, Mantl S (2010) Systematic study of Schottky barrier MOSFETs with dopant segregation on thin-body SOI. Solid State Electron 54:185–190. https://doi.org/10.1016/j.sse.2009.12.017

    Article  CAS  Google Scholar 

  24. Lin H-C, Wang M-F, Hou F-J, Liu J-T, Li Y, Huang T-Y, Sze SM (2002) Effects of sub-gate bias on the operation of Schottky-barrier SOI MOSFETs having nano-scale channel. Nanotechnology, 2002. IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE conference on. IEEE, pp 205–208

  25. Zhu S, Yu HY, Whang SJ, Chen JH, Shen C, Zhu C, Lee SJ, Li MF, Chan DSH, Yoo WJ, Du A, Tung CH, Singh J, Chin A, Kwong DL (2004) Schottky-barrier S/D MOSFETs with high gate dielectrics and metal-gate electrode. IEEE Electron Device Letters 25:268–270. https://doi.org/10.1109/LED.2004.826569

    Article  CAS  Google Scholar 

  26. Yang WF, Lee SJ, Liang GC, Eswar R, Sun ZQ, Kwong DL (2008) Temperature dependence of carrier transport of a silicon nanowire Schottky-barrier field-effect transistor. IEEE Trans Nanotechnol 7:728–732. https://doi.org/10.1109/TNANO.2008.2003353

    Article  Google Scholar 

  27. Tsui B-Y, Lu C-P (2007) Current transport mechanisms of Schottky barrier and modified Schottky barrier MOSFETs. Solid state device research conference, 2007. ESSDERC 2007. 37th European. pp. 307–310. IEEE

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Council of Scientific & Industrial Research (CSIR grant no. 22 (0737)/17/EMR-II), the Key Grant Project of Indian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanth Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Bhowmick, B. Source-Drain Junction Engineering Schottky Barrier MOSFETs and their Mixed Mode Application. Silicon 12, 821–830 (2020). https://doi.org/10.1007/s12633-019-00170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00170-0

Keywords

Navigation