Skip to main content
Log in

Influence of Low-Temperature Annealing on the Electrical Conductivity of SiOx Films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, the results on the conductivity of silicon enriched SiOx films and the influence of low temperature annealing at 450 °C in the H2 and vacuum are presented. SiOx films were prepared on Si substrate by low pressure chemical vapor deposition (LP CVD) with using SiH4, N2O as the precursor gases and H2 as a carrier gas. The measurements of current-voltage characteristics were carried out in the wide temperature range 95-334 K. It was revealed that the influence of atmosphere of the low temperature annealing is significant. In general case it was established that after the annealing of the initial film in the hydrogen the conductivity increases and after annealing in the vacuum decreases. Characteristic feature of all films (without and with annealing) is the conductivity according to the Mott’s law at low voltages (U < 1 V) in temperature range 295 < T < 345 K. The calculated densities of electron states (traps) in bandgap near the Fermi level from slope of curves in Mott’s coordinate are equal to N = 2.12 × 1017 eV−1 × cm−3 (initial film), N = 4.14 × 1019 eV−1 × cm−3, (H2), N = 6.62 × 1016 eV−1 × cm−3 (vacuum). At higher voltages and lower temperature another transport mechanisms have been revealed. Among them are space-charge limited current (SCLC), Poole-Frenkel mechanism and Fowler-Nordheim tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavrylyuk OO, Semchuk OY, Steblova OV, Evtukh AA, Fedorenko LL, Bratus OL, Zlobin SO, Karlsteen M (2015) Influence of laser annealing on SiOx films properties. Appl Surf Sci 336:217–221. https://doi.org/10.1016/j.apsusc.2014.11.066

    Article  CAS  Google Scholar 

  2. Huang R, Zhang LJ, Gao DJ, Pan Y, Qin SQ, Tang PR, Cai YM, Wang YY (2011) Resistive switching mechanism in silicon highly rich SiOx(x < 0.75) films based on silicon dangling bonds percolation model. Appl Phys A Mater Sci Process 102:927. https://doi.org/10.1063/1.4776695

    Article  CAS  Google Scholar 

  3. Mehonic A, Cueff S, Wojdak M, Hudziak S, Jambois O (2012) Resistive switching in silicon suboxide films. J Appl Phys 111:074507. https://doi.org/10.1063/1.3701581

    Article  CAS  Google Scholar 

  4. O.L. Bratus’, A.A. Evtukh, V.A. Ievtukh, V.G. Litovchenko, J Non-Crystal Solids, 354 (2008) https://doi.org/10.1016/j.jnoncrysol.2008.06.037, Nanocomposite SiO2(Si) films as a medium for non-volatile memory, 354, 4281

    Article  CAS  Google Scholar 

  5. AA Evtukh, OV Pylypova,·O Martyniuk, H Mimura (2018) 8, 5. https://doi.org/10.1007/s13204-018-0710-3

    Article  CAS  Google Scholar 

  6. Shareef HN, Dimos D (1997) Leakage and Reliability Characteristics of Lead Zirconate Titanate Thin-Film Capacitors. J Am Ceram Soc 80:12–3132. https://doi.org/10.1111/j.1151-2916.1997.tb03240.x

    Article  Google Scholar 

  7. Lee JS (2011) Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J Mater Chem 21(37):14097. https://doi.org/10.1039/C1JM11050K

    Article  CAS  Google Scholar 

  8. Sun J, Lindvall N, Cole M, Angel K, Wang T, Teo K, Yurgens A (2012) Low Partial Pressure Chemical Vapor Deposition of Graphene on Copper. IEEE Trans Nanotechnol 11(2):255–260. https://doi.org/10.1109/TNANO.2011.2160729

    Article  Google Scholar 

  9. Li M, Liu D, Wei D, Song X, Wei D, Wee A (2016) Controllable Synthesis of Graphene by Plasma-Enhanced Chemical Vapor Deposition and Its Related Applications. Adv Sci 3:11. https://doi.org/10.1002/advs.201600003

    Article  CAS  Google Scholar 

  10. Ryu J, Kim Y, Won D, Kim N, Park J, Lee E-K, Cho S (2014) Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition. ACS Nano 8(1):950–956. https://doi.org/10.1021/nn405754d

    Article  CAS  PubMed  Google Scholar 

  11. Koumetz SD, Pesant J-C, Dubois C (2008) A computational study of ion-implanted beryllium diffusion in gallium arsenide. Comput Mater Sci 43(4):902–908. https://doi.org/10.1016/j.commatsci.2008.02.003

    Article  CAS  Google Scholar 

  12. Wang H, Quan L, Hu B, Wei G, Jiang X (2017) Aerosol method assisted fabrication Ag@SiO2 and efficient catalytic activity for reduction of 4-nitrophenol. IET Micro Nano Lett 12:9–688. https://doi.org/10.1049/mnl.2017.0010

    Article  CAS  Google Scholar 

  13. Bedra L, Thomann AL, Semmar N, Dussart R, Mathias J (2010) Highly sensitive measurements of the energy transferred during plasma sputter deposition of metals. J Phys D Appl Phys 43(6):065202. https://doi.org/10.1088/0022-3727/43/6/065202

    Article  CAS  Google Scholar 

  14. Perego M, Fanciulli M, Bonafos C, Cherkashi N (2006) Synthesis of mono and bi-layer of Si nanocrystals embedded in a dielectric matrix by e-beam evaporation of SiO/SiO2 thin films. Mater Sci Eng 26:5–7. https://doi.org/10.1016/j.msec.2005.09.058

    Article  CAS  Google Scholar 

  15. Tsoi E, Normand P, Nassiopoulou AG, loannou-Sougleridis V, Salonidou A, Giannakopoulos K (2005) Silicon nanocrystal memories by LPCVD of amorphous silicon, followed by solid phase crystallization and thermal oxidation. J Phys Conf Ser 10(1):31–34. https://doi.org/10.1088/1742-6596/10/1/008

    Article  Google Scholar 

  16. Alexandrov SE, Hitchman ML (2005) Chemical Vapor Deposition Enhanced by Atmospheric Pressure Non-thermal Non-equilibrium Plasmas. Chem Vap Depos 11(11–12):457–468. https://doi.org/10.1002/cvde.200500026

    Article  CAS  Google Scholar 

  17. Ivanda M, Gebavi H, Ristic D, Furic K, Music S, Ristic M, Zonja S, Biljanovic P, Gamulin O, Balarin M, Montagna M, Ferarri M, Righini GC (2007) Silicon nanocrystals by thermal annealing of Si-rich silicon oxide prepared by the LPCVD method. J Mol Struct 834–836:461–464. https://doi.org/10.1016/j.molstruc.2006.09.036

    Article  CAS  Google Scholar 

  18. Schroeder H (2015) Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?! J Appl Phys 117:215103. https://doi.org/10.1063/1.4921949

    Article  CAS  Google Scholar 

  19. Popa M, Tiginyanu I, Ursaki V (2017) Growth and characterization of ZnS Se thin films deposited by spray pyrolysis. J Phys 62:19–26. https://doi.org/10.1016/j.tsf.2018.08.018

    Article  CAS  Google Scholar 

  20. Wang Y, Qian X, Chen K, Fang Z, Li W, Xu J (2013) Resistive switching mechanism in silicon highly rich SiOx(x < 0.75) films based on silicon dangling bonds percolation model. Appl Phys Lett 102:042103. https://doi.org/10.1063/1.4776695

    Article  CAS  Google Scholar 

  21. Schumann E, Hübner R, Grenzer J, Gemming S, Krause M (2018) Percolated Si:SiO2 Nanocomposites: Oven- vs. Millisecond Laser-Induced Crystallization of SiOx Thin Films. Thin Films Nanomater 8(7). https://doi.org/10.3390/nano8070525

    Article  Google Scholar 

  22. Gould RD, Lopez MG (2003). Thin Solid Films 433:1–384

    Article  Google Scholar 

  23. Song HZ, Akahane K, Lan S, Xu HZ, Okada Y, Kawabe M (2001) In-plane photocurrent of self-assembledInxGa1−xAs/GaAs(311)Bquantum dot arrays. Phys Rev B 64:085303. https://doi.org/10.1103/PhysRevB.64.085303

    Article  CAS  Google Scholar 

  24. Czarnacka K, Komarov FF (2016) Photonics applications in astronomy, communications, industry, and high-energy physics experiments, p 100310D. https://doi.org/10.1117/12.2249111

    Book  Google Scholar 

  25. Surana K, Lepage H, Lebrun JM, Doisneau B, Bellet D, Vandroux L, Thon P, Mur P (2012). Nanotechnology 23(10):105401. https://doi.org/10.1088/0957-4484/23/10/105401

    Article  CAS  PubMed  Google Scholar 

  26. Puglisi RA, Vecchio C, Lombardo S, Lorenti S, Camalleri MC (2010) Charge transport in ultrathin silicon rich oxide/SiO2 multilayers under solar light illumination and in dark conditions. J Appl Phys 108:023701. https://doi.org/10.1063/1.3463381

    Article  CAS  Google Scholar 

  27. Chiu FC (2014) A Review on Conduction Mechanisms in Dielectric Films. Adv Mater Sci Eng 2014:1–18. https://doi.org/10.1155/2014/578168

    Article  CAS  Google Scholar 

  28. Stadele M, Sacconi F, Di Carlo A, Lugli P (2003) Enhancement of the effective tunnel mass in ultrathin silicon dioxide layers. J Appl Phys 93(5):2681–2690. https://doi.org/10.1063/1.1541107

    Article  CAS  Google Scholar 

  29. Evtukh AA, Druzhinin A, Ostrovskii I, Kizjak A, Grigoriev A, Steblova O, Nichkalo S (2014). Adv Mater Res 854. https://doi.org/10.4028/www.scientific.net/AMR.854.83

    Article  Google Scholar 

  30. Kizjak A, Evtukh A, Steblova O, Pedchenko Y (2016) Electron Transport through Thin SiO<sub>2</sub> Films Containing Si Nanoclusters. J Nano Res 39:169–177. https://doi.org/10.4028/www.scientific.net/

    Article  CAS  Google Scholar 

  31. N. F. Mott, E. A. Davis, & K. Weiser, (Phys Today, 1972), 25, 55 https://doi.org/10.1063/1.3071145, Electronic Processes in Non‐Crystalline Materials

    Article  Google Scholar 

  32. Rinnert H, Jombois O, Vergnat M, Molinari M (2005) Study of the photoluminescence of amorphous and crystalline silicon clusters in SiOx thin films. Opt Mater 27:983–987. https://doi.org/10.1016/j.optmat.2004.08.048

    Article  CAS  Google Scholar 

  33. Godet C (2002) Variable range hopping revisited: the case of an exponential distribution of localized states. J Non-Crystal Solids 299-302(1):333–338. https://doi.org/10.1016/S0022-3093(01)01008-0

    Article  CAS  Google Scholar 

  34. Varanasi VG, Ilyas A, Velten MF, Shah A, Lanford WA, Aswath PB (2017) Role of Hydrogen and Nitrogen on the Surface Chemical Structure of Bioactive Amorphous Silicon Oxynitride Films. J Phys Chem B 121(38):8991–9005. https://doi.org/10.1021/acs.jpcb.7b05885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lampert MA, Mark P (1970). Current injection in solids. NY Academic Press, New York. https://doi.org/10.1126/science.170.3961.966-a

    Article  Google Scholar 

  36. Mark P, Helfrich W (1962) Space‐Charge‐Limited Currents in Organic Crystals. J Appl Phys 33(1):205–215. https://doi.org/10.1063/1.1728487

    Article  CAS  Google Scholar 

  37. Kumar V, Jain SC, Kapoor AK, Geens W, Aernauts T, Poortmans J, Mertens R (2003) Trap density in conducting organic semiconductors determined from temperature dependence of J−V characteristics. J Appl Phys 94:1283–1285. https://doi.org/10.1063/1.1582552

    Article  CAS  Google Scholar 

  38. A.K. Jonscher, R.M. Hill (1975) Physics of Thin Films In: G. Hass, M.H. Francombe, and R.W. Hoffman (eds) Vol. 8. Academic Press, New York, p 360

  39. Sze S.M, Ng KK (2006). Physics of semiconductor devices. John wiley & sons. https://doi.org/10.1002/0470068329

    Book  Google Scholar 

  40. Lisovskii IP, Litovchenko VG, Lozinskii VB, Frolov SI, Flietner H, Fussel W, Schmidt E (1995) IR study of short-range and local order in SiO2 and SiOx films. J Non-Cryst Solids 187:91–95. https://doi.org/10.1016/0022-3093(95)00118-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Pylypova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pylypova, O.V., Evtukh, A.A., Skryshevsky, V.A. et al. Influence of Low-Temperature Annealing on the Electrical Conductivity of SiOx Films. Silicon 12, 433–441 (2020). https://doi.org/10.1007/s12633-019-00149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00149-x

Keywords

Navigation