Skip to main content
Log in

Preparation and Characterization of Ni0.5Zn0.5Fe2O4 + Polyurethane Nanocomposites Using Melt Mixing Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, nanocomposites of Ni0.5Zn0.5Fe2O4/polyurethane were prepared by melt mixing method and determined the influence of amount of Ni0.5Zn0.5Fe2O4 (0, 0.5, 1, 2, and 3 wt%) fillers on magnetic induction of segmented polyurethane composites with optimum processing conditions. The obtained nanocomposites particles of all the samples were characterized by TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry), XRD (X-Ray Diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy) and Hysteresis measurements (P-E Loop tracer) & VSM (Vibrating Sample Magnetometer). XRD showed the strong characteristic diffraction peaks for ferrite while diffused diffraction pattern for polyurethane. Moreover on increasing nano fillers concentration causes the agglomeration in the composites owing to irregular distribution and consequently the strength of the material reduced. FTIR spectroscopy showed that the positions of peaks for distinctive functional groups of both ferrite and SPU. Micrographs showed that Ferrite/SPU nanocomposites having good dispersion of filler in matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safronov AP, Beketov IV, Komogorstev SV, Kurlyandskaya GV, Medvedev AI, Leiman DV, Larrannaga A, Bhagat SM (2013) Spherical magnetic nanoparticles fabricated by laser target evaporation. AIP Adv 3:052135

    Article  CAS  Google Scholar 

  2. Shen W, Zhang L, Zhao B, Du Y, Zhou X (2018) Growth mechanism of octahedral like nickel ferrite crystals prepared by modified hydrothermal method and morphology dependent magnetic performance. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.02.219. Corrected Proof

  3. Senthil VP, Gajendiran J, Gokul Raj S, Shanmugavel T, Ramesh Kumar G, Reddy CP (2018) Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures. Chem Phys Lett 695:19–23

    Article  CAS  Google Scholar 

  4. Gupta N, Jain P, Rana R, Shrivastava S (2017) Current development in synthesis and characterization of nickel ferrite nanoparticle. Materials Today A 4:342–349

    Google Scholar 

  5. Thomas AS, Simon AM, Waddill GD, Switzer JA (2002) Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. JACS 124:7604–7609

    Article  CAS  Google Scholar 

  6. Sayed AME, Hamzawy EMA (2006) Structure and magnetic properties of nickel-zinc ferrite nanoparticles prepared by glass crystallization method. Monatsh Chem 137:1119–1125

    Article  CAS  Google Scholar 

  7. Gupta AK, Gupta M (2005) Bio materials, synthesis and surface engineering of iron oxide nano particles for biomedical application. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  8. Aphesteguy JC, Jacobo SE, Lezama L, Kurlyandskaya GV, Schegoleva NN (2014) Microwave resonant and zero-field absorption study of doped magnetite prepared by a co-precipitation method. Molecules 19:8387–8401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haneda K, Morrish AH (1988) Noncollinear magnetic structure of CoFe2O4 small particles. J Appl Phys 63:4258

    Article  CAS  Google Scholar 

  10. Pannaparayil T, Marande R, Komarneni S (1991) Magnetic properties of high-density Mn-Zn ferrites. J Appl Phys 69:5349

    Article  CAS  Google Scholar 

  11. Musto P, Larobina D, Cotugno S, Straffi P, Florio GD, Mensitieri G (2013) Confocal Raman imaging, FTIR spectroscopy and kinetic modelling of the zinc oxide/stearic acid reaction in a vulcanizing rubber. Polymer 54:685–693

    Article  CAS  Google Scholar 

  12. Lin Y, Wei Q, Qian G, Yao L, Watkins JJ (2012) Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding. Macromolecules 45:8665–8673

    Article  CAS  Google Scholar 

  13. Ucar H, Ipus JJ, Laughlin DE, McHenry ME (2013) Tuning the Curie temperature in γ-FeNi nanoparticles for magneto caloric applications by controlling the oxidation kinetics. J Appl Phys 113:17A918

    Article  CAS  Google Scholar 

  14. Nathani H, Misra RDK (2004) Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites. Mater Sci Eng B 113:228– 235

    Article  Google Scholar 

  15. Chaterjee A, Das D, Chaktvorthy D, Chouhdhary K (1990) Mössbauer spectra of nanocrystalline Fe and Fe-Cr particles in sol-gel-derived SiO2 glass. Appl Phys Lett 57:1360

    Article  Google Scholar 

  16. Terziyan TV, Safronov AP, Petrov AV, Volodina NS, Beketov IV (2014) Effect of the chemical nature of metal oxide on adhesion to the polyacrylate matrix in filled nanocomposites. Russ J Phys Chem A 88:1300–1306

    Article  CAS  Google Scholar 

  17. Shanmugavel T, Gokul Raj S, Ramesh Kumar G, Rajarajan G, Saravanam D (2015) Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in low temperature regime. Journal of King Saud University-Science 27:176–181

    Article  Google Scholar 

  18. Ling ZY, Xiong MR, Zhang QQ (2000) Effects of iron deficiency on magnetic properties of (Ni0.76Zn0.24)O(Fe2O3)0.575 ferrite. J Magn Magn Mater 219:9–14

    Article  Google Scholar 

  19. Von Aulock WE (1965) Handbook of microwave ferrite materials. Academic Press, London, p 379

    Google Scholar 

  20. Sileo E, Rotelol R, Jacobo S (2002) Nickel zinc ferrites prepared by the citrate precursor method. Physica B 320:257–260

    Article  CAS  Google Scholar 

  21. Parvathy NN, Pajonk GM, Rao AV (1999) Growth and optical properties of quantized CdS crystallites in TEOS silica xerogels. J Mater Synth Process 7:221–228

    Article  CAS  Google Scholar 

  22. Jiang JS, Yang XL, Gao L, Gao JK, Jiang JZ (1999) Synthesis and characterization of nanocrystalline zinc ferrite. Nanostruct Mater 12:143–146

    Article  Google Scholar 

  23. Arnold RL, Rader CP (1992). In: Harper CA (ed) Thermoplastic elastomers in handbook of plastics, elastomers and composites. McGraw Hill, New York

  24. Pal V, Thakur OP, Dwivedi RK (2015) Investigation of MPB region in lead free BLNT-BCT system through XRD and Raman spectroscopy. J Phys D Appl Phys 48:055301

    Article  CAS  Google Scholar 

  25. Pal V, Dwivedi RK, Thakur OP (2014) Synthesis and ferroelectric behavior of Gd doped BNT ceramics. Curr Appl Phys 14:99–107

    Article  Google Scholar 

  26. Zhao DL, Lv Q, Shen ZM (2009) Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J Alloys Compd 480:634–638

    Article  CAS  Google Scholar 

  27. Istanbullu H, Ahmed S, Sheraz MA, Irehman U (2013) Development and characterization of novel polyurethane films impregnated with tolfenamic acid for therapeutic applications. Biomed Res Int:8, Article ID 178973

  28. Maensiri S, Masingboon C, Boonchom B, Seraphin S (2007) A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater 56:797–800

    Article  CAS  Google Scholar 

  29. Murthy VRK, Sobhanadri J (1976) Dielectric properties of some nickel-zinc ferrites at radio frequency. Phys Status Solidi A 36:133–135

    Article  Google Scholar 

  30. Selvan RK, Augustin CO, Berchmans LB, Sarawathi R (2003) Combustion synthesis of CuFe2O4. Mater Res Bull 38:41–54

    Article  CAS  Google Scholar 

  31. Waldron RD (1955) Infrared spectra of ferrites. Physical Review Journals Archive 99:1727–1735

    CAS  Google Scholar 

  32. Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41:1345–1353

    Article  CAS  Google Scholar 

  33. Pal V, Dwivedi RK, Thakur OP (2014) Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics. Mater Res Bull 51:189–196

    Article  CAS  Google Scholar 

  34. Pal V, Thakur OP, Dwivedi RK (2015) Effect of co-substitution of La/Li on structure, microstructure, dielectric and piezoelectric behavior of Bi0.50Na0.50TiO3 ceramics. Indian J Phys 89:123– 130

    Article  CAS  Google Scholar 

  35. Markys GC (2014) Characterization of ferroelectric bulk materials and thin films. Springer, Berlin

    Google Scholar 

  36. Luies ME, Glass AM (1977) Principle and applications of ferroelectrics and related materials. Clorendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks to Mr. Amitabh Chakraborty, Technical officer, DMSRDE, Kanpur for their valuable suggestions in thermal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Agarwal.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, K., Prasad, M., Katiyar, M. et al. Preparation and Characterization of Ni0.5Zn0.5Fe2O4 + Polyurethane Nanocomposites Using Melt Mixing Method. Silicon 11, 1035–1045 (2019). https://doi.org/10.1007/s12633-018-9900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9900-6

Keywords

Navigation