Skip to main content

Structure and Properties of the POSS-Containing Nanocomposites Based on Polyurethane Matrix

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 246))

Abstract

Nanocomposites based on Polyurethane (PU) matrix and 1,2-propanediolisobutyl-POSS (POSS) nanoparticles were prepared and investigated. POSS nanoparticles were incorporated into PU matrix in the process of PU synthesis. The structure peculiarities, the dynamic mechanical and thermal properties, the morphology of the nanocomposites have been investigated. Overall, it was found that POSS nanoparticles are capable to be incorporated into PU polymer chain by a chemical reaction between hydroxyl groups of POSS and diisocyanate groups of PU. The incorporation of the POSS nanoparticles into PU matrix leads to the formation of a more ordered structure, the POSS acts as a nanostructuring agent in the system. The introduction of the POSS nanoparticles into PU matrix significantly affects the thermal properties of the nanocomposites: the increasing in thermal stability was found. Investigation by WAXS/SAXS methods has shown that nanofiller POSS slightly affects the amorphous structure of PU. However, to a greater extent, the nanofiller POSS affects the microphase structure of PU. By dynamic mechanical analysis, it was detected that the storage moduli of PU/POSS nanocomposites exceeds the storage modulus of PU. But Mn/Mo changes non-monotonically with POSS content. The storage modulus of the nanocomposites increases in 1, 5 times compared to the native PU for the nanocomposites contained from 1 to 5 wt% of POSS. From the morphology investigation, it is obvious that POSS introduced into PU matrix acts as nanostructuring agent. As a result, the nanocomposites with more ordered structure are formed thus leading to materials with improved thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1561. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  2. Shaffer MSP, Sandler JKW (2006) Carbon nanotube/nanofibre polymer composites. In: Advani SG (ed) Processing and properties of nanocomposites. World Scientific, Singapore

    Google Scholar 

  3. Bershtein VA, Gun`ko VM, Karabanova LV, Sukhanova TE, Yakushev PN, Egorova LM, Turova AA, Zarko VI, Pakhlov EM, Vylegzhanina ME, Mikhalovsky SV (2013) Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv 3:14560–14570. https://doi.org/10.1039/c3ra40295a

  4. Karabanova LV, Bershtein VA, Sukhanova TE, Yakushev PN, Egorova LM, Lutsyk ED, Svyatyna AV, Vylegzhanina ME (2008) 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: composition-nanostructure-segmental dynamics-elastic properties relationships. J Pol Sci B 46(16):1696–1712. https://doi.org/10.1002/polb.21506

    Article  Google Scholar 

  5. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205. https://doi.org/10.1021/ma060733p

    Article  ADS  Google Scholar 

  6. Wolinska-Grabczyk A, Jankowski A (2007) Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Sep Pur Tech 57(3):413–417. https://doi.org/10.1016/j.seppur.2006.03.025

    Article  Google Scholar 

  7. Gumenna MA, Shevchuk AV, Klimenko NS, Shevchenko VV (2007) Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym J 29(3):177–185 [in Russian]

    Google Scholar 

  8. Karabanova LV, Whitby RLD, Bershtein VA, Korobeinyk AV, Yakushev PN, Bondaruk OM, Lloyd AW, Mikhalovsky SV (2013) The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym Sci 291(3):573–583. https://doi.org/10.1007/s00396-012-2745-4

    Article  Google Scholar 

  9. Karabanova LV, Whitby RL, Bershtein VA, Korobeinyk AV, Yakushev PN, Bondaruk OM, Lloyd AW, Mikhalovsky SV (2012) Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp Sci Tech 72(8):865–872. https://doi.org/10.1016/j.compscitech.2012.02.008

    Article  Google Scholar 

  10. Lelah MD, Cooper SL (1986) Polyurethane in medicine and surgery. CRC Press, Boca Raton, pp 158–167

    Google Scholar 

  11. Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785. https://doi.org/10.1016/S0142-9612(00)00237-4

    Article  Google Scholar 

  12. Karabanova LV, Lloyd AW, Mikhalovsky SV, Helias M, Philips GJ, Rose SF, Mikhalovska L et al (2006) Polyurethane/Poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J Mater Sci Matter Med 17:1283–1296. https://doi.org/10.1007/s10856-006-0603-y

    Article  Google Scholar 

  13. Madhavan K, Reddy BSR (2009) Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J Mem Sci 342(1–2):291–299. https://doi.org/10.1016/j.memsci.2009.07.002

    Article  Google Scholar 

  14. Fomenko AA, Gomza YuP, Klepko VV, Gumenna MA, Klimenko NS, Shevchenko VV (2009) Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym J 31(2):137–143 [in Ukrainian]

    Google Scholar 

  15. Mahapatra SS, Yadav SK, Cho JW (2012) Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React Funct Polym 72(4):227–232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001

    Article  Google Scholar 

  16. Lewicki JP, Pielichowski K, Jancia M, Hebda E, Albo RLF, Maxwell RS (2014) Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym Degrad Stab 104:50–56. https://doi.org/10.1016/j.polymdegradstab.2014.03.025

    Article  Google Scholar 

  17. Wei K, Wang L, Zheng S (2013) Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym Chem 4:1491–1501. https://doi.org/10.1039/c2py20930f

    Article  Google Scholar 

  18. Bourbigot S, Turf T, Bellayer S, Duquesne S (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab 94:1230–1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016

    Article  Google Scholar 

  19. Huang J, Jiang P, Li X, Huang Y (2016) Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J Mater Sci 51(5):2443–2452. https://doi.org/10.1007/s10853-015-9557-0

    Article  ADS  Google Scholar 

  20. Wang W, Guo Y, Otaigbe JU (2009) The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer 50(24):5749–5757. https://doi.org/10.1016/j.polymer.2009.05.037

    Article  Google Scholar 

  21. Lai YS, Tsai CW, Yang HW, Wang GP, Wu KH (2009) Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater Chem Phys 117(1):91–98. https://doi.org/10.1016/j.matchemphys.2009.05.006

    Article  Google Scholar 

  22. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002

    Article  Google Scholar 

  23. Hebda E, Pielichowski K (2018) Polyurethane/POSS hybrid materials. In: Kalia S, Pielichowski K (eds) Polymer/POSS nanocomposites and hybrid materials: preparation, properties, applications. Springer, Switzerland, pp 167–204. https://doi.org/10.1007/978-3-030-02327-0_5

  24. Zhou H, Chua MH, Xu J (2019) Functionalized POSS-based hybrid composites. In: Pielichowski K, Majka TM (eds) Polymer composites with functionalized nanoparticles. Synthesis, properties, and applications. Elsevier, pp 179–210. https://doi.org/10.1016/B978-0-12-814064-2.00006-8

  25. Ghermezcheshme H, Mohseni M, Yahiaei H (2015) Use of nanoidentation and nanoscratch experiments to reveal the mechanical behaviour of POSS containing polyurethane nanocomposite coatings: The role of functionality. Tribol Int 88:66–75. https://dx.doi.org//10.1016//j.triboint.2015.02.023

  26. Mir Mohamad Sadeghi G (2018) Synthesis and evaluation of the effect of structural parameters on recovery rate of shape memory Polyurethane-POSS nanocomposites. Eur Polym J https://doi.org//10.1016//j.eurpolymj.2018.12.041

  27. Blanko I (2018) Decomposition and ageing of hybrid materials with POSS. In: Kalia S, Pielichowski K (eds) Polymer/POSS nanocomposites and hybrid materials. Preparation, properties, applications. Springer, Switzerland, pp 415–462. https://doi.org/10.1007/978-3-030-02327-0_13

  28. Karabanova LV, Boiteux G, Gain O, Seytre G, Sergeeva LM, Lutsyk ED (2004) Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym Int 53(12):2051–2058. https://doi.org/10.1002/pi.1627

  29. Kratky O, Leopold H (1964) Messung und unterdruckung der blendenstreuung am kolimationsystem fur rontgenkleinwinkeluntersuchungen. Die Macromol Chemie 75(1):69–74

    Article  Google Scholar 

  30. Schmidt PW, Hight RJ (1960) Slit height corrections in small angle X-ray scattering. Acta Cryst 13:480–483. https://doi.org/10.1107/S0365110X60001138

  31. Wamke A, Dopierała R, Prochaska K, Maciejewski H, Biadasz A, Dudkowiak A (2015) Characterization of Langmuir monolayer, Langmuir-Blodgett and Langmuir-Schaefer films formed by POSS compounds. Col Surf A 464:110–120. https://doi.org/10.1016/j.colsurfa.2014.10.022

    Article  Google Scholar 

  32. Jerman I, Koželj M, Orel B (2010) The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol Energy Mater Sol Cells 94(2):232–245. https://doi.org/10.1016/j.solmat.2009.09.008

    Article  Google Scholar 

  33. Jerman I, Mihelčič M, Verhovšek D, Kovač J, Orel B (2011) Polyhedral oligomeric silsesquioxane trisilanols as pigment surface modifiers for fluoropolymer based thickness sensitive spectrally selective (TSSS) paint coatings. Sol Energy Mater Sol Cells 95(2):423–431. https://doi.org/10.1016/j.solmat.2010.08.005

    Article  Google Scholar 

  34. Kraus-Ophir S, Jerman I, Orel B, Mandler D (2011) Symmetrical thiol functionalized polyhedral oligomeric silsesquioxanes as building blocks for LB films. Soft Matter 7(19):8862–8869. https://doi.org/10.1039/c1sm05443k

    Article  ADS  Google Scholar 

  35. Dittmar U, Hendan BJ, Florke U, Marsmann HC (1995) Funktionalisierte octa-(propylsilsesquioxane) (3-XC3H6)8(Si8O12) modellverbindungen für oberflächenmodifizierte kieselgele. J Organomet Chem 489(1–2):185–194. https://doi.org/10.1016/0022-328X(94)05100-P

    Article  Google Scholar 

  36. Bärtsch M, Bornhauser P, Calzaferri G, Imhof R (1994) H8Si8O12: A model for the vibrational structure of zeolite A. J Phys Chem 98(11):2817–2831. https://doi.org/10.1021/j100062a016

    Article  Google Scholar 

  37. Xue M, Zhang X, Wu Z, Wang H, Ding X, Tian X (2013) Preparation and flame retardancy of polyurethane/POSS nanocomposites. Chin J Chem Phys 26(4):445–450. https://doi.org/10.1063/1674-0068/26/04/445-450

    Article  Google Scholar 

  38. Maoz R, Sagiv J, Degenhardt J, Möhwald H, Quint P (1995) Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infra-red spectroscopy and X-ray scattering techniques. Supramol Sci 2(1):9–24. https://doi.org/10.1016/0968-5677(96)85635-5

    Article  Google Scholar 

  39. Bellamy LJ (1980) The infrared spectra of complex molecules, v. II. Advances in infrared group frequencies. 2nd ed. Chapman and Hall, London, pp 1–299. https://trove.nla.gov.au/version/12064222

  40. Moon JH, Seo JS, Xu.Y, Yang S (2009) Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 19(27):4687–4691. https://doi.org/10.1039/b901226e

  41. Smetankina NP, Angelova AV, Lukas SD (1967) Polyurethane coatings based on polyoxypropylene glycols. Synthesis and physical chemistry of polymers (polyurethanes) 5:49–56 [in Russian]

    Google Scholar 

  42. Zhang S, Zou Q, Wu L (2006) Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromol Mater Eng 291(7):895–901. https://doi.org/10.1002/mame.200600144

    Article  Google Scholar 

  43. Guinier A (1956) Théorie et technique de la Radiocristallographic. Dunod, Paris, p 601

    Google Scholar 

  44. Ruland W (1971) Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J Appl Cryst 4(1):70–73. https://doi.org/10.1107/S0021889871006265

    Article  Google Scholar 

  45. Perret R, Ruland W (1971) Eine verbesserte Auswertungsmethode für die Röntgenkleinewinkelstreuung von Hochpolymeren. Kolloid Z Z Polymere 247(1–2):835–843. https://doi.org/10.1007/BF01500257

    Article  Google Scholar 

  46. Kuznetsova VP, Laskovenko NN, Zapunnaya KV (1984) Organosilicon polyurethanes. Naukova dumka, Kyiv, p 224. [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Karabanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karabanova, L.V., Honcharova, L.A., Shtompel, V.I. (2021). Structure and Properties of the POSS-Containing Nanocomposites Based on Polyurethane Matrix. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_34

Download citation

Publish with us

Policies and ethics