Skip to main content
Log in

Photoluminescence Study of Deep Level Defects in ZnO Thin Films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present work, zinc oxide (ZnO) thin films were prepared by heating, at 500 C, metallic Zn films deposited onto Si (100) substrates by RF magnetron sputtering. According to the x-rays diffraction patterns, the polycrystalline hexagonal ZnO phase (wurtzite) was obtained with a preferential orientation along the (101) planes. The increase of both the crystallites size and the Zn-O bond length, as a function of the heating time, reflect the improvement of the crystalline quality of the investigated films. The investigated films emitted in ultraviolet, visible and infrared regions. The ultraviolet emission was linked to the crystalline quality of the films. All the visible emission related defects were identified. Their concentrations vary differently as a function of the heating time. The infrared emission originated from the oxygen anti-sites (OZn). The correlation between the decrease of the electrical resistivity and the increase of both 2 + charged oxygen vacancies (\(V_{O}^{++})\) and hydrogen impurities (H-I) defects suggested that the unintentional n-type conductivity in ZnO came from the collective contribution of \(V_{O}^{++}\) and H-I defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Look DC (2001) Mater Sci Eng B 80:383

    Article  Google Scholar 

  2. Ozgür Ü, Alivov YL, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98:041301

    Article  CAS  Google Scholar 

  3. McCluskey MD, Jokela SJ (2009) J Appl Phys 106:071101

    Article  CAS  Google Scholar 

  4. Chowdhury F, Hasan SMF, Alam MS (2012) Turk J Phys 36:1

    CAS  Google Scholar 

  5. Nithya N, Radhakrishnan SR (2012) Appl Sci Res 3:4041

    CAS  Google Scholar 

  6. Kyoungwon K, Debnath PC, Lee DH (2011) Nanoscale Res Lett 6:1

    Google Scholar 

  7. Benramache S, Chabane F, Benhaoua B (2013) J Semicond 34:023001

    Article  CAS  Google Scholar 

  8. Look DC, Reynolds DC, Litton CW, Jones RL, Eason DB, Cantwell G (2002) Appl Phys Lett 81:1830

    Article  CAS  Google Scholar 

  9. Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M, Shimizu A (1997) Jpn J Appl Phys 236:L1453

    Article  Google Scholar 

  10. Ye ZZ, Lu CG, Chen HH, Zhang YZ, Wang L, Zhao BH, Huang JY (2003) J Cryst Growth 253:258

    Article  CAS  Google Scholar 

  11. Vines L, Monakhov EV, Schifano R, Mtangi W, Auret FD, Svensson BG (2010) J Appl Phys 107(10):103707

    Article  CAS  Google Scholar 

  12. Han NS, Shim HS, Seo JH, Kim SY, Park SM, Song JK (2010) J Appl Phys 107:084306

    Article  CAS  Google Scholar 

  13. Look DC, Hemsky JW, Sizelove JR (1999) Phys Rev Lett 82:2552

    Article  CAS  Google Scholar 

  14. Van de Walle CG (2000) Phys Rev Lett 85:1012

    Article  PubMed  Google Scholar 

  15. Thomas DG, Lander JJ (1956) J Chem Phys 25(6):1136

    Article  CAS  Google Scholar 

  16. Ismail RA, Al-Jawad SMH, Hussein N (2014) Appl Phys A 117:1977

    Article  CAS  Google Scholar 

  17. Bouanane I, Kabir A, Boulainine D, Zerkout S, Schmerber G, Boudjema B (2016) J Electron Mater 45:3307

    Article  CAS  Google Scholar 

  18. Stambolova I, Blaskov V, Shipochka M, Vassilev S, Dushkin C, Dimitriev Y (2010) Mater Chem Phys 121:447

    Article  CAS  Google Scholar 

  19. Subramanian M, Tanemura M, Hihara T, Ganesan V, Soga T, Jimbo T (2010) Chem Phys Lett 487:97

    Article  CAS  Google Scholar 

  20. Rao TP, Santhoshkumar MC (2009) Appl Surf Sci 255:7212

    Article  CAS  Google Scholar 

  21. Dennis B (2000) Elements of X-ray Diffraction, 3rd edn. Prentice-Hall International, Upper Saddle River

    Google Scholar 

  22. Adachi H, Tsukada M, Satoko C (1978) J Phys Soc Jpn 45:875

    Article  CAS  Google Scholar 

  23. Zhang XY, Chen ZW, Qi YP, Feng Y, Zhao L, Qi L, Ma MZ, Liu RP, Wang WK (2007) Chin Phys Lett 24:1032

    Article  CAS  Google Scholar 

  24. Rusu DL, Rusu GG, Luca D (2011) Act Phys Polon 119:850

    Article  CAS  Google Scholar 

  25. Johnson WA, Mehl PA (1939) Trans AIME 135:416

    Google Scholar 

  26. Kolmogorov AN (1937) Izv Akad Nauk SSSR, Ser Fiz 1:335

    Google Scholar 

  27. Suvorova NA, Usov IO, Stan L, DePaula RF, Dattelbaum AM, Jia QX, Suvorova AA (2008) Appl Phys Lett 92:141911

    Article  CAS  Google Scholar 

  28. Caglar M, Caglar Y, Ilicani S (2006) J Optoelectron Adv Mater 8:1410

    CAS  Google Scholar 

  29. Cheng WX, Ding AL, Zheng XS, Qiu PS, He XY (2009) J Phys.: Confer Ser 152:012036

    Google Scholar 

  30. Ko HJ, Chen YF, Zhu Z, Yao T, Kobayashi I, Uchiki H (2000) Appl Phys Lett 76:1905

    Article  CAS  Google Scholar 

  31. Lee JH (2010) Electron Mater Lett 6:159

    Google Scholar 

  32. Ahn HA, Kim YY, Kim DC, Mohanta SK, Cho HK (2009) J Appl Phys 105:013502

    Article  CAS  Google Scholar 

  33. Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA (1996) Appl Phys Lett 15:403

    Article  Google Scholar 

  34. Zwingel D (1972) J Lumin 5:385

    Article  CAS  Google Scholar 

  35. Dijken AV, Meulenkamp EA, Vanmaekelbergh DL, Meijerink A (2000) J Phys Chem B 104:1715

    Article  CAS  Google Scholar 

  36. Djurišić AB, Leung YH, Tam KH, Ding L, Ge WK, Chen HY, Gwo S (2006) Appl Phys Lett 88:103107

    Article  CAS  Google Scholar 

  37. Lavrov EV, Weber J, Van Börrnert F, de Walle CG, Helbig R (2002) Phys Rev B 66:165205

    Article  CAS  Google Scholar 

  38. Pollock CR (1986) J Lumin 35:65

    Article  CAS  Google Scholar 

  39. Manzano CV, Alegre D, Caballero-Calero O, Alèn B, Martín-González MS (2011) J Appl Phys 110:043538

    Article  CAS  Google Scholar 

  40. Yang Y, Yan H, Fu Z, Yang B, Xia L, Xu Y, Zuo J, Li F (2006) Solid State Commun 138:521

    Article  CAS  Google Scholar 

  41. Look DC, Hemsky JW, Sizelove JR (1999) Phys Rev Lett 82:2552

    Article  CAS  Google Scholar 

  42. Tomlins GW, Routbort JL, Mason TO (2000) J Appl Phys Rev 87:117

    Article  CAS  Google Scholar 

  43. Janotti A (2005) Appl Phys Lett 87:122102

    Article  CAS  Google Scholar 

  44. Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501

    Article  CAS  Google Scholar 

  45. Liu L, Mei Z, Tang A, Azarov A, Kuznetsov A, Xue QK, Du X (2016) Phys Rev B 93:235305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge one of them; G. Schmerber for his help during the samples characterization. Thanks are due to G. Ferblantier and D. Muller, from ICube in Strasbourg (France) for their help during the optical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kabir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, A., Bouanane, I., Boulainine, D. et al. Photoluminescence Study of Deep Level Defects in ZnO Thin Films. Silicon 11, 837–842 (2019). https://doi.org/10.1007/s12633-018-9876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9876-2

Keywords

Navigation