Skip to main content
Log in

Characterization of ZnO Thin Films Prepared by Thermal Oxidation of Zn

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide thin films were prepared by thermal oxidation of zinc films at a temperature of 500°C for 2 h. The Zn films were deposited onto glass substrates by magnetron RF sputtering. The sputtering time varied from 2.5 min to 15 min. The physico-chemical characterization of the ZnO films was carried out depending on the Zn sputtering time. According to x-ray diffraction, ZnO films were polycrystalline and the Zn-ZnO phase transformation was direct. The mean transmittance of the ZnO films was around 80% and the band gap increased from 3.15 eV to 3.35 eV. Photoluminescence spectra show ultraviolet, visible, and infrared emission bands. The increase of the UV emission band was correlated with the improvement of the crystalline quality of the ZnO films. The concentration of native defects was found to decrease with increasing Zn sputtering time. The decrease of the electrical resistivity as a function of Zn sputtering time was linked to extrinsic hydrogen-related defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jiang, F.L. Wong, M.K. Fung, and S.T. Lee, Appl. Phys. Lett. 83, 1857 (2003).

    Article  Google Scholar 

  2. D. Gal, G. Hodes, D. Lincot, and H.W. Schock, Thin Solid Films 361–362, 79 (2000).

    Article  Google Scholar 

  3. H. Fabricius, T. Skettrup, and P. Bisgaard, Appl. Opt. 25, 2764 (1986).

    Article  Google Scholar 

  4. T. Yamamoto, T. Shiosaki, and A. Kawabata, J. Appl. Phys. 51, 3113 (1980).

    Article  Google Scholar 

  5. T. Xu, G. Wu, G. Zhang, and Y. Hao, Sens. Actuators A Phys. 104, 61 (2003).

  6. X. Li Guo, J.H. Choi, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 40, 177 (2001).

  7. Y.F. Chen, D.M. Bagnall, H.J. Koh, K.T. Park, K.J. Hiraga, Z.Q. Zhu, and T.F. Yao, J. Appl. Phys. 84, 3912 (1998).

    Article  Google Scholar 

  8. X. Teng, H. Fan, S. Pan, C. Ye, and G. Li, Mater. Lett. 61, 201 (2007).

    Article  Google Scholar 

  9. H.J. Ko, Y.F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, Appl. Phys. Lett. 76, 1905 (2000).

    Article  Google Scholar 

  10. F.G. Chen, Z.Z. Ye, W.Z. Xu, B.H. Zhao, L.P. Zhu, and J.G. Lv, J. Cryst. Growth 281, 458 (2005).

    Article  Google Scholar 

  11. M. Hiramatsu, K. Imaeda, N. Horio, and M. Nawata, J. Vac. Sci. Technol., A 16, 669 (1998).

    Article  Google Scholar 

  12. K. Govender, D.S. Boyle, P.B. Kenway, and P. O’Brien, J. Mater. Chem. 14, 2575 (2004).

    Article  Google Scholar 

  13. R. Romero, D. Leinen, E.A. Dalchiele, J.R. Ramos-Barrado, and F. Martín, Thin Solid Films 515, 1942 (2006).

    Article  Google Scholar 

  14. B.K. Choi, D.H. Chang, Y.S. Yoon, and S.J. Kang, J. Mater. Sci. Mater. Electron. 17, 1011 (2006).

  15. S. Li, S. Zhou, H. Liu, Y. Hang, C. Xia, J. Xu, S. Gu, and R. Zhang, Mater. Lett. 61, 30 (2007).

    Article  Google Scholar 

  16. Y. Yang, X. Li, J. Chen, H. Chen, and X. Bao, Chem. Phys. Lett. 373, 22 (2003).

    Article  Google Scholar 

  17. E.J. Ibanga, C. Le Luyer, and J. Mugnier, Mater. Chem. Phys. 80, 490 (2003).

    Article  Google Scholar 

  18. X.D. Gao, X.M. Li, and W.D. Yu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 113, 274 (2004).

  19. S. Wang, G. Xia, J. Shao, and Z. Fan, J. Alloys Compd. 424, 304 (2006).

    Article  Google Scholar 

  20. D.C. Look, Mater. Sci. Eng. 80, 383 (2001).

    Article  Google Scholar 

  21. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).

    Article  Google Scholar 

  22. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Article  Google Scholar 

  23. D.C. Reynolds, D.C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).

    Article  Google Scholar 

  24. S.A. Studenikin and M. Cocivera, J. Appl. Phys. 91, 5060 (2002).

    Article  Google Scholar 

  25. A. Van Dijiken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin. 90, 123 (2000).

    Article  Google Scholar 

  26. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).

    Article  Google Scholar 

  27. A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000).

    Article  Google Scholar 

  28. S.B. Zhang, S.H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).

    Article  Google Scholar 

  29. A.B. Djurišić and Y.H. Leung, Small 2, 944 (2006).

  30. Y.G. Wang, S.P. Lau, X.H. Zhang, H.W. Lee, S.F. Yu, B.K. Tay, and H.H. Hng, Chem. Phys. Lett. 375, 113 (2003).

    Article  Google Scholar 

  31. X.L. Wu, G.G. Siu, C.L. Fu, and H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001).

    Article  Google Scholar 

  32. N. Ohashi, T. Nakata, T. Sekiguchi, H. Hosono, M. Mizuguchi, T. Tsurumi, J. Tanaka, and H. Haneda, Jpn. J. Appl. Phys. 38, 113 (1999).

    Article  Google Scholar 

  33. S.A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).

    Article  Google Scholar 

  34. B.J. Pierce and R.L. Hengehold, J. Appl. Phys. 47, 644 (1976).

    Article  Google Scholar 

  35. K.I. Hagemark, J. Solid State Chem. 16, 293 (1976).

    Article  Google Scholar 

  36. G. Neumann, Current Topics in Materials Science, ed. E Kaldis (Amsterdam: North Holland, 1981).

  37. A. Janotti and C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

    Article  Google Scholar 

  38. N.H. Erdogan, K. Kara, H. Ozdamar, R. Esen, and H. Kavak, Appl. Surf. Sci. 271, 70 (2013).

    Article  Google Scholar 

  39. I. Mihailova, V. Gerbreders, E. Tamanis, E. Sledevskis, R. Viter, and P. Sarajevs, J. Non-Cryst. Solids 377, 212 (2013).

    Article  Google Scholar 

  40. B. Dennis, Elements of X-ray Diffraction, 3rd ed. (Upper Saddle River, NJ: Prentice-Hall International, 2000).

    Google Scholar 

  41. P. Kofstad, High Temperature Corrosion (London: Elsevier, 1988).

    Google Scholar 

  42. M. Wang, J. Wang, W. Chen, Y. Cui, and L. Wang, Mater. Chem. Phys. 97, 219 (2006).

    Article  Google Scholar 

  43. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983).

    Article  Google Scholar 

  44. M.F. El-Kuhaili, M.A. Al-Maghrabi, S.M.A. Durrani, and I.A. Bakhtiari, J. Phys. D: Appl. Phys. 41, 215302 (2008).

    Article  Google Scholar 

  45. A.P. Rambu and G.I. Rusu, Superlattice Microstr. 47, 300 (2010).

    Article  Google Scholar 

  46. J.I. Pankove, Optical Processing in Semiconductors (New York: Dover, 1971).

    Google Scholar 

  47. J.-H. Lee, Electron. Mater. Lett. 6, 155 (2010).

  48. H.A. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, and H.K. Cho, J. Appl. Phys. 105, 013502 (2009).

    Article  Google Scholar 

  49. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, Appl. Phys. Lett. 15, 403 (1996).

    Article  Google Scholar 

  50. D. Zwingel, J. Lumin. 5, 385 (1972).

    Article  Google Scholar 

  51. E.V. Lavrov, J. Weber, C.G. Van de Walle, and R. Helbig, Phys. Rev. B 66, 165205 (2002).

    Article  Google Scholar 

  52. C. Pollock, J. Lumin. 35, 65 (1986).

    Article  Google Scholar 

  53. C.V. Manzano, D. Alegre, O. Caballero-Calero, B. Alén, and M.S. Martín-González, J. Appl. Phys. 110, 043538 (2011).

  54. Y. Yang, H. Yan, Z. Fu, B. Yang, L. Xia, Y. Xu, J. Zuo, and F. Li, Solid State Commun. 138, 521 (2006).

    Article  Google Scholar 

  55. G.A. Shi, M. Stavola, S.J. Pearton, M. Thieme, E.V. Lavrov, and J. Weber, Phys. Rev. B 72, 195211 (2005).

    Article  Google Scholar 

  56. J.J. Lander, J. Phys. Chem. Solids 3, 87 (1957).

    Article  Google Scholar 

  57. S.J. Baik, H.J. Jang, H.C. Lee, W.Y. Cho, and K.S. Lim, Appl. Phys. Lett. 70, 3516 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge one of them, G. Schmerber, for the valuable discussions and for the structural and morphological characterization. Thanks are due to G. Ferblantier and D. Muller, from ICube in Strasbourg (France) for their help during the optical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kabir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouanane, I., Kabir, A., Boulainine, D. et al. Characterization of ZnO Thin Films Prepared by Thermal Oxidation of Zn. J. Electron. Mater. 45, 3307–3313 (2016). https://doi.org/10.1007/s11664-016-4469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4469-6

Keywords

Navigation