Skip to main content

Advertisement

Log in

Incorporation of Iron Nanoparticles into Silicon Carbide Nanoparticles as Novel Antimicrobial Bimetallic Nanoparticles

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Zero valent iron nanoparticles have an attracting and ever growing interest in various research fields due to the fascinating potential. In the present work, antimicrobial activity of zero valent iron supported on silicon carbide nanoparticles for the first time investigated. Thermal gravimetric analysis (TGA), dynamic light scattering (DLS), vibrating-sample magnetometer (VSM), Fourier transform infrared spectroscopy FT-IR, scanning electron microscopy with X-ray microanalysis (SEM-EDS), X-ray powder diffraction, transmission electron microscopy (TEM) and N2 adsorption isotherms, indicated that the zero-valent iron was successfully deposited onto the silicon carbide surface. Anti-bacterial activity against human pathogenic bacteria suggest strong practical applications of modified silicon carbide nano particles with other nano particles as a new antimicrobial agent due to their proper pore sizes, high specific areas, and high mechanical and chemical stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandi V, Kandi S (2015) Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol Health 17(37)

  2. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, Ruiz de Larramendi I, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499—511

    Article  CAS  PubMed  Google Scholar 

  3. Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M (2011) Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 9 (11):1035–1052

    Article  CAS  PubMed  Google Scholar 

  4. Prabu D, Parthiban R (2013) Synthesis and characterization of nanoscale zero valent iron (NZVI) nanoparticles for environmental remediation. Asian J Pharm Tech 3:181–184

    Google Scholar 

  5. Zhang R, Li J, Liu C, Shen J, Sun X, Han W, Wang L (2013) Reduction of nitrobenzene using nanoscale zero-valent iron confined in channels of ordered mesoporous silica. Colloids Surf A Physicochem Eng Asp 425:108–114

    Article  CAS  Google Scholar 

  6. Auffan M, Achouak W, Rose J, Roncato M, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  PubMed  Google Scholar 

  7. Chen Q, Li J, Wu Y, Shen F, Yao M (2013) Biological responses of Gram-positive and Gram-negative bacteria on ZVI (Fe0), Fe2+ and Fe3+. RSC Adv 3:13835–13842

    Article  CAS  Google Scholar 

  8. Chen Q, Gao M, Li J, Shen F, Wu Y, Xu Z, Yao M (2012) Inactivation and mag-Netic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: observations and mechanisms. Environ Sci Technol 46:2360–2367

    Article  CAS  PubMed  Google Scholar 

  9. You Y, Han J, Chio PC, Jin Y (2005) Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 39:9263–9269

    Article  CAS  PubMed  Google Scholar 

  10. Dhiman R, Johnson E, Skou EM, Morgen P, Andersen SM (2013) SiC nanocrystals as Pt catalyst supports for fuel cell applications. J Mater Chem A 1:6030–6036

    Article  CAS  Google Scholar 

  11. Ryu A, Jeong SW, Jang A, Choi H (2011) Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity. Appl Catal B: Environ 105:128–135

    Article  CAS  Google Scholar 

  12. Liu Y, Lowry GV (2006) Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ Sci Technol 40:6085–6090

    Article  CAS  PubMed  Google Scholar 

  13. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  14. Bai X, Ye ZF, Qu YZ, Li YF, Wang ZY (2009) Immobilization of nanoscale Fe0 in and on PVA microspheres for nitrobenzene reduction. J Hazard Mater 172:1357–1364

    Article  CAS  PubMed  Google Scholar 

  15. Choi H, Agarwal S, Al-Abed SR (2008) Adsorption and simultaneous dechlorination of PCBsn GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept. Environ Sci Technol 43:488–493

    Article  CAS  Google Scholar 

  16. Li Z, Kirk Jones H, Zhang P, Bowman RS (2007) Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets. Chemosphere 68:1861–1866

    Article  CAS  PubMed  Google Scholar 

  17. You Y, Han J, Chio PC, Jin Y (2005) Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 39:9263–9269

    Article  CAS  PubMed  Google Scholar 

  18. Dhiman R, Johnson E, Skou EM, Morgen P, Andersen SM (2013) SiC nanocrystals as Pt catalyst supports for fuel cell applications. J Mater Chem A 1:6030–6036

    Article  CAS  Google Scholar 

  19. Sandra F, Ballestero A, Nguyen VL, Tsampas MN, Vernoux P, Balan C, Iwamoto Y, Demirci UB, Miele P, Dashb SB, Swain SK (2016) Silicon carbide-based membranes with high soot particle filtration efficiency, durability and catalytic activity for CO/HC oxidation and soot combustion. J Membr Sci 501:79–92

    Article  CAS  Google Scholar 

  20. Santos FSD, Lago FR, Fabiana LY, Fonseca V (2017) Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J Mater Res Technol 6(2):178–183

    Article  CAS  Google Scholar 

  21. Dua H, Wanga J, Lianga Z, Shena Y, Youb F (2015) Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite. Sens Actuators A 228:1–8

    Article  CAS  Google Scholar 

  22. Youa DJ, Jinb X, Jin Hoe Kimb JH, Jinc S-A, Lee S, Choic KH, Baekc WJ, Paka C, Kimb JM (2015) Development of stable electrochemical catalysts using ordered mesoporous carbon/silicon carbide bimetallic nanoparticles. Int J Hydrogen Energy 40:12352–12361

    Article  CAS  Google Scholar 

  23. He C, Zhang F, Yue L, Shang X, Chen J, Hao Z (2012) Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature. Appl Catal B: Environ 111–112:46–57

    Article  CAS  Google Scholar 

  24. George Robin AT, Karthick Raja Namasivayam S, Raju S (2012) Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature. Bull Pharm Med Sci (BOPAMS) 1(1):7–11

    Google Scholar 

  25. Prabu D, Parthiban R, Senthil Kumar P, Karthick Raja Namasivayam S (2015) Synthesis, characterization and antibacterial activ ity of nano zero-valent iron impregnated cashew nut shell. Int J Pharm Pharm Sci 7(1):139–141

    Google Scholar 

  26. Naseem T, Akhyar Farrukh M (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7

    Article  CAS  Google Scholar 

  27. Guardado-Alvarez TM, Devi LS, Vabre JM, Pecorelli TA, Schwartz BJ, Durand JO, Zink JI (2014) Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR. Nanoscale 6:4652–4658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu HH, Lanphere J, Walker S, Cohen Y (2015) Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation. Nanotechnology 26

  29. Holden PA, Klaessig F, Turco RF, Priester JH, Rico CM, Avila-Arias H, Gardea-Torresdey JL (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48:10541–10551

    Article  CAS  PubMed  Google Scholar 

  30. Croissant J, Chaix A, Mongin O, Wang M, Clement S, Raehm L, Zink JI (2014) Two-photon-triggered drug delivery via fluorescent nanovalves. Small 10:1752–1755

    Article  CAS  PubMed  Google Scholar 

  31. Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zboril R, Torresdey-Gardea JL (2014) Enhanced formation of silver nanoparticles in Ag + -NOM-iron (II, III) systems and antibacterial activity studies. Environ Sci Technol 48:3228–3235

    Article  CAS  PubMed  Google Scholar 

  32. Youns MD, Hoheisel J, Efferth T (2011) Therapeutic and diagnostic applications of nanoparticles. Curr Drug Targets 12:357–365

    Article  CAS  PubMed  Google Scholar 

  33. Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q (2011) Green synthesis of Au–Pd bimetallic nanoparticles: single-step bioreduction method with plant extract. Mater Lett 65:2989–2991

    Article  CAS  Google Scholar 

  34. Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965

    Article  CAS  PubMed  Google Scholar 

  35. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138

    Article  CAS  PubMed  Google Scholar 

  36. Rico C, Peralta-Videa JR, Gardea-Torresdey JL (2015) Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: a fourier transform infrared (FT-IR) microspectroscopy study. Appl Spectrosc 69:287–295

    Article  CAS  PubMed  Google Scholar 

  37. Lazareva A, Keller AA (2014) Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2:1656–1665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support (Grant number: 32/1012) from the Research Councils of Ilam University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ensieh Ghasemian Lemraski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemraski, E.G., Tahmasebi, Z., Valadbeigi, T. et al. Incorporation of Iron Nanoparticles into Silicon Carbide Nanoparticles as Novel Antimicrobial Bimetallic Nanoparticles. Silicon 11, 857–867 (2019). https://doi.org/10.1007/s12633-018-9872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9872-6

Keywords

Navigation